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Building an intelligent machine with human-like perception, interaction, learning, and rea-

soning remains a significant and challenging problem. Despite the recent remarkable progress

in artificial intelligence, especially the deep learning techniques, we are still far from reaching

this goal. Human intelligence exhibits unique advantages in learning to solve multiple tasks

from limited data, acquiring skills and knowledge from interactions, learning efficiently with

stages, and generalizing concepts to novel domains and environments. Merely combining

individual algorithms without a human-centric architecture is hopeless for achieving such

comprehensive capabilities.

In this dissertation, we study the human-like holistic understanding in 3D scenes, which

is the most related scenario to the real world. The core idea is to imitate the human’s

capability in perception, interaction, learning, and reasoning for solving holistic tasks. We

first propose a framework for human-centric 3D scene parsing, reconstruction, and synthesis,

focusing on integrating imagined humans into the perception system for interpreting the

underlying human activities and intentions beyond the pixels. Then we describe several

works on human-centric interaction understanding, including the human-object interactions

and human-human interactions. Finally, we imitate the human-like learning and reasoning

abilities by studying how to learn concepts with curriculum, design efficient closed-loop

neural-grammar-symbolic learning algorithm, and build a concept learning framework that

achieves systematic generalization.
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CHAPTER 1

Introduction

Humans have superior capabilities in understanding and interacting with environments.

Specifically, humans can: (1) learn to recognize the objects and events, infer and under-

stand the invisible causes with an efficient process from a limited amount of data; (2) learn

the skills and knowledge from passive and active interactions with the surroundings; (3)

learn efficiently with stages and curriculum; (4) generalize the concept and adapt to novel

domains and environments. How should we build a machine or robot with similar abilities

in perception, interaction, learning, and reasoning?

Over the last decade, significant progress has been made in recognition, classification, and

reconstruction with the rapid advancement of deep learning, fueled by hardware accelerations

and the availability of massive sets of labeled data. However, we are still far away from

solving computer vision or real machine intelligence. The inference and reasoning abilities

of current computer vision systems are narrow and highly specialized, require large sets

of labeled training data designed for particular tasks, and lack a general understanding

of commonsense knowledge for cognitive reasoning, an efficient method to learn skills and

concepts incrementally from the interactions, and a generalization ability to novel scenarios.

To tackle this challenge and fill in the gap between modern artificial intelligence (AI) and

human intelligence, we focus on studying the human-like holistic 3D scene understand-

ing problem. This fundamental problem requires machines to mimic humans’ capabilities for

solving holistic (comprehensive) tasks in 3D environments. It bridges and combines frontier

research in computer vision, computer graphics, machine learning, robotics, and

cognitive science by requiring various algorithms and modules for perception, interac-

tion, learning, and reasoning, as shown in Figure 1.1.
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Figure 1.1: Illustration of how humans interact with the world. To build a machine with
human-like holistic understanding of the 3D scenes, it is necessary to develop algorithms and
systems for perception, interactions, learning, reasoning, and planning.

Specifically, we describe the problems, challenges, and our proposed framework for solving

holistic tasks in the following sections. We leave the planning part for future research.

1.1 Perception: Human-like 3D Scene Understanding

Most previous 3D scene understanding approaches only focus on interpreting the visible

pixels and entities in the images. However, they lack an in-depth understanding of the

underlying invisible causes for the images, i.e., the human activities, human intentions, and

hidden physical and social commonsense. To achieve such capabilities, we propose human-

centric algorithms for 3D scene parsing and reconstruction [HQZ18, HQX18, HCY19]. In

[HQZ18], we jointly parse a single RGB image and reconstruct a holistic 3D configuration

composed by a set of CAD models through analysis-by-synthesis. Besides, as shown in

Figure 1.2, we incorporate imagined humans into the computational framework and reason by

maximizing the marginal posterior probability over the visible objects and layouts, creating
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Figure 1.2: Human-centric 3D scene parsing and reconstruction. By incorporating imagined
humans into the task-oriented computational framework, the perception system can generate
interacting humans and infer the affordance of the reconstructed 3D scenes. (from [HQZ18])

a task-oriented model that generates diverse human-like solutions. This approach serves as

a slow-thinking reasoning process for holistic 3D scene understanding based on short-run

Markov chain Monte Carlo (MCMC).

Moreover, we train multiple branches of deep networks that solve holistic tasks (i.e., 3D

object detection, 3D room layout estimation, and camera pose estimation) cooperatively in

[HQX18, HCY19]. They serve as the fast-thinking initialization for the holistic 3D scene

understanding. Combined with [HQZ18], we build up a complete computational perception

framework for human-like holistic 3D scene understanding.

We further design human-centric 3D synthesis approaches [JQZ18, QZH18]. They opti-

mize the room arrangements by considering the imagined humans and their potential activ-

ities as relational contexts. With a graphics rendering engine, they sample and synthesize

3D room layouts and 2D images to obtain large-scale realistic 2D/3D image data with the

perfect per-pixel ground truth.

1.2 Interaction: Human-like 3D Interaction Understanding

Humans exhibit extraordinary abilities in developing skills and knowledge from the interac-

tion with surrounding environments, making the human-like understanding of 3D interaction

important. An intelligent machine is expected to understand the structures and essence of

human-object interactions and human-human interactions for interpreting task-oriented ac-

tivities, intentions, and social relations. To study the 3D human-object interactions (HOIs),
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(a) Human-object interactions.

(a) Non-communicative
single single

(b) Mutual Gaze
mutual mutual

(d) Gaze Following
follow share

(e) Joint Attention
refer followmutual share mutual

Event-level Gaze Communication

(c) Gaze Aversion
mutual avert single

(1) single (2) mutual

(3) avert (4) refer

(5) follow (6) share

Atomic-level Gaze Communication

(b) Human-human interactions.

Figure 1.3: To interpret the human activities and social relations, we learn the human-object
interactions (a) and human-human interactions (b) from images and videos.

we propose a joint parsing algorithm for understanding the 3D human-object interaction

with physical commonsense [CHY19]. To understand how humans communicate and collab-

orate, we propose a spatio-temporal graph reasoning approach for understanding human gaze

interaction [FWH19] and a dataset for learning multi-task multi-agent activities [JCH20].

1.3 Learning and Reasoning: Human-like Representation and Con-

cept Learning

Opposite to learning narrow tasks with a massive amount of labeled data, humans are excel

at (1) learning the representation with less supervision; (2) learning efficiently and incre-

mentally with stages; and (3) generalizing concepts into novel domains and environments.

In order to imitate such fascinating capabilities, we look at the triangulation strategy among

observations from humans, property of data, and principles of designing algorithms, as shown

in Figure 1.3. Drawing inspiration from the brain, we design algorithms that can efficiently

learn from data and generalize to novel scenes.

Specifically, we propose a competence-aware curriculum for visual concept learning [LHH20b];

a closed-loop learning method for efficient neural-symbolic reasoning [LHH20a]; and an arith-

metic approach for studying the systematic generalization of perception, syntax, and seman-

tics [LHH21]. Some of these learning and reasoning approaches are studied in clean and

straightforward settings but are promising for generalizing to real-world applications.

The dissertation is mainly structured by the aforementioned three parts of human-like
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Figure 1.4: The triangulation strategy for designing the human-like learning and reasoning
system. It extracts principles from the brain and looks at three aspects at the same time.
(from [GLG20])

understanding. We summarize our methods and propose promising directions for future

research in these areas in the last chapter.
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CHAPTER 2

Human-centric Task-oriented 3D Scene Parsing and

Reconstruction

In this chapter, we introduce a complete computational framework for human-centric task-

oriented 3D scene parsing and reconstruction. This framework jointly parse a single

RGB image and reconstruct a holistic 3D configuration composed by a set of CAD models.

The computation model consists of two parts: (1) a bottom-up initial module (Section 2.2 and

Section 2.3) for proposing the objects, layout, and camera parameter as an initial parse graph;

(2) a joint inference module (Section 2.1) that seeks optimal configuration using Markov chain

Monte Carlo (MCMC), which efficiently traverses through the non-differentiable solution

space, jointly optimizing object localization, 3D layout, and hidden human context.

2.1 Holistic 3D Scene Parsing and Reconstruction with Imagined

Human

2.1.1 Introduction

In this section, We propose a computational framework to parse and reconstruct the 3D con-

figuration of an indoor scene from a single RGB image using a stochastic grammar model.

We introduce a Holistic Scene Grammar (HSG) to represent the 3D scene structure, which

characterizes a joint distribution over the functional and geometric space of indoor scenes.

The proposed HSG captures three essential but often latent dimensions of the indoor scenes:

i) latent human context, describing the affordance and the functionality of a room arrange-

ment, ii) geometric constraints over the scene configurations, and iii) physical constraints
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that guarantee physically plausible parsing and reconstruction. We solve this parsing and re-

construction problem in an analysis-by-synthesis fashion, seeking to minimize the differences

between the input image and the rendered image generated by our 3D representation, over

the space of depth, surface normal, and object segmentation map. The optimal configuration

(i.e., parse graph) is inferred using Markov chain Monte Carlo (MCMC), which efficiently

traverses through the non-differentiable solution space, jointly optimizing object localization,

3D layout, and hidden human context. Experimental results demonstrate that the proposed

algorithm improves the generalization ability and significantly outperforms prior methods

on 3D layout estimation, 3D object detection, and holistic scene understanding.

The complexity and richness of human vision are not only reflected by the ability to

recognize visible objects, but also to reason about the latent actionable information [Soa13],

including inferring latent human context as the functionality of a scene [QZH18, JKS13], re-

constructing 3D hierarchical geometric structure [GEH10, LZZ14], and complying with the

physical constraints that guarantee the physically plausible scene configurations [ZZJ14].

Such rich understandings of an indoor scene are the essence for building an intelligent com-

putational system, which transcends the prevailing appearance- and geometry-based recog-

nition tasks to account also for the deeper reasoning of observed images or patterns.

One promising direction is analysis-by-synthesis [YK06] or “vision as inverse graph-

ics” [Gre76, LB14]. In this paradigm, computer vision is treated as an inverse problem

as opposed to computer graphics, of which the goal is to reverse-engineer hidden factors

occurred in the physical process that produces observed images.

In this work, we embrace the concept of vision as inverse graphics, and propose a 3D in-

door scene parsing and reconstruction algorithm that simultaneously reconstructs the func-

tional hierarchy and the 3D geometric structure of an indoor scene from a RGB image.

Figure 2.1 schematically illustrates the analysis-by-synthesis inference process. The joint

inference algorithm takes proposals from various vision modules and infers the 3D structure

by comparing various projections (i.e., depth, normal, and segmentation) rendered from the

recovered 3D structure with the ones directly estimated from an input image.
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Figure 2.1: Illustration of the proposed 3D indoor scene parsing and reconstruction in an
analysis-by synthesis fashion. A 3D representation is initialized by individual vision mod-
ules (e.g., object detection, 2D layout estimation). A joint inference algorithm compares
the differences between the rendered normal, depth, and segmentation map with the ones
estimated directly from the input RGB image, and adjust the 3D structure iteratively.

Specifically, we introduce a Holistic Scene Grammar (HSG) to represent the hierarchical

structure of a scene. As illustrated in Figure 2.2, our HSG decomposes a scene into hidden

groups in the functional space (i.e., hierarchical structure including activity groups) and

object instances in the geometric space (i.e., CAD models). For the functional space, in

contrast to the conventional method that only models the object-object relations, we propose

a novel method to model human-object relations by imagining latent human in activity

groups to further help explain and parse the observed image. For the geometric space, the

geometric attributes (e.g., size, position, orientation) of individual objects are taken into

considerations, as well as the geometric relations (e.g., supporting relation) among them. In

addition, physical constraints (e.g., collision among the objects, violations of the layout) are

incorporated to generate a physically plausible 3D parsing and reconstruction of the observed

image.
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Here, an indoor scene is represented by a parse graph (pg) of a grammar, which consists of

a hierarchical structure and a Markov random field (MRF) over terminal nodes that captures

the rich contextual relations between objects and room layout (i.e., the room configuration

of walls, floors, and ceilings).

A maximum a posteriori probability (MAP) estimate is designed to find the optimal

solution that parses and reconstructs the observed image. The likelihood measures the

similarity between the observed image and the rendered images projected from the inferred

pg onto the 2D image space. Thus, the pg can be iteratively refined by sampling an MCMC

with simulated annealing based on posterior probability. We evaluate our method on a large-

scale RGB-D dataset by comparing the 3D reconstruction results with the ground-truth.

2.1.1.1 Related Work

Scene Parsing: Existing scene parsing approaches fall into two streams. i) Discriminative

approaches [DHS15, ZJR15, NHH15, CPK17, LSD15, LMS17, ZSQ17] classify each pixel to

a semantic label. Although prior work has achieved high accuracy in labeling the pixels,

these methods lack a general representation of visual vocabulary and a principle approach

to exploring the semantic structure of a general scene. ii) Generative approaches [ZZ11,

ZZ13, CCP13, LFU13, GH13, ZST14, ZSY17a, ZLH17] can distill scene structure, making it

closer to human-interpretable structure of a scene, enabling potential applications in robotics,

VQA, etc.. In this work, we combine those two streams in an analysis-by-synthesis framework

to infer the hidden factors that generate the image.

Single Image Scene Reconstruction: Previous approaches [HEH05, HZ05, SCN06] of

indoor scene reconstruction using a single RGB image can be categorized into three streams.

i) 2D or 3D room layout prediction by extracting geometric features and ranking the 3D

cuboids proposals [HHF09, LHK09, ML15, DFC16, RLC16, ISS17a, LBM17, ZLY17]. ii) By

representing objects via geometric primitives or CAD models, previous approaches [SNS13,

AME14, LKT14, SX14, TM15, BRG16, SX16, WXL16, DL17] utilize 3D object recognition

or pose estimation to align object proposals to a RGB or depth image. iii) Joint estimation
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of the room layout and 3D objects with contexts [ZZ13, CCP13, ZST14, SLX15, ISS17a,

ZLH17, ZSY17a, SYZ17a]. In particular, Izadinia et al.[ISS17a] show promising results in

inferring the layout and objects without the contextual relations and physical constraints.

In contrast, our method models the hierarchical scene structure, hidden human context and

physical constraints, providing a semantic representation. Furthermore, our method presents

a joint inference algorithm using MCMC, which in theory can achieve a global optimal.

Scene Grammar: Scene grammar models have been used to infer the 3D structure and

functionality from a RGB image [ZZ11, ZZ13, JKS13, JS14]. Our HSG differs from [ZZ11,

ZZ13] in two major aspects: i) Our model represents the 3D objects with CAD models rather

than geometric primitives, modeling detail contextual relations (e.g., supporting relation),

which provides better realization of parsing and reconstruction. ii) We infer latent human and

activity groups in the HSG, which helps the explanation and parsing. Compared to [JKS13,

JS14], we model and parse the 3D structure of objects and layouts from a single RGB image,

rather than labeling the point-clouds using RGB-D images.

2.1.1.2 Contributions

This work makes four major contributions:

1. We integrate geometry and physics to interpret and reconstruct indoor scenes with

CAD models. We jointly optimize 3D room layouts and object configurations, largely improv-

ing the performance of scene parsing and reconstruction on SUN RGB-D dataset [SLX15].

2. We incorporate hidden human context (i.e., functionality) into our grammar, enabling

to imagine latent human pose in each activity group by grouping and sampling. In this way,

we can optimize the joint distribution of both visible and invisible [XTZ13] components of

the scene.

3. We propose a complete computational framework to combine generative model (i.e.,

a stochastic grammar), discriminative models (i.e., direct estimations of depth, normal,

and segmentation maps) and graphics engines (i.e., rendered images) in scene parsing and
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Figure 2.2: An indoor scene represented by a parse graph (pg) of the HSG that spans
across the functional space and the geometric space. The functional space characterizes the
hierarchical structure and the geometric space encodes the spatial entities with contextual
relations.

reconstruction. To the best of our knowledge, we are the first to use the inferred depth,

surface normal and object segmentation map to aid parsing and reconstructing monocular

scenes (room layout and multiple objects).

4. We model the supporting relations among objects, eliminating the widely adopted

assumption that all objects must stand on the ground. Such flexibility provides better

parsing and reconstruction of the real-world scenes with complex object relations.

2.1.2 Holistic Scene Grammar

We represent the hierarchical structure of indoor scenes by a Holistic Scene Grammar (HSG).

An HSG consists of a latent hierarchical structure in the functional space F and terminal

object entities in the geometric space G. The intuition is that for human environments,

the object arrangement in the geometric space can be viewed as a projection from the

functional space (i.e., human activities). The functional space as a probabilistic context free

grammar (PCFG) captures the hierarchy of the functional groups, and the geometric space

captures the spatial contexts among objects by defining an MRF on the terminal nodes. The

two spaces together form a stochastic context-sensitive grammar (SCSG). The HSG starts

from a root scene node and ends with a set of terminal nodes. An indoor scene is represented
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by a parse graph pg as illustrated in Figure 2.2.

Definition: The stochastic context-sensitive grammar HSG is defined as a 5-tuple xS, V,R,E, P y.

S denotes the root node of the indoor scene. V is the vertex set that includes both non-

terminal nodes Vf P F and terminal nodes Vg P G. R denotes the production rule, and E

the contextual relations among the terminal nodes, which are represented by the horizontal

links in the pg. P is the probability model defined on the pg.

Functional Space: The non-terminal nodes Vf “ tV
c
f , V

a
f , V

o
f , V

l
f u P F consist of the scene

category nodes V c
f , activity group nodes V a

f , objects nodes V o
f , and layout nodes V l

f .

Geometric Space: The terminal nodes Vg “ tV
o
g , V

l
g u P G are the CAD models of object

entities and room layouts. Each object v P V o
g is represented as a CAD model, and the object

appearance is parameterized by its 3D size, location, and orientation. The room layout v P V l
g

is represented as a cuboid which is further decomposed into five planar surfaces of the room

(left wall, right wall, middle wall, floor, and ceiling with respect to the camera coordinate).

The following production rules R are defined for HSG:

Production Rule Semantic Meaning Instances
r1 : S Ñ V c

f scene Ñ category 1 | category 2 | . . . scene Ñ office| kitchen

r2 : V c
f Ñ V a

f ¨ V
l
f category Ñ activity groups ¨ layout office Ñ (walking, reading) ¨ layout

r3 : V a
f Ñ V o

f activity group Ñ functional objects sitting Ñ (desk, chair)

where ¨ denotes the deterministic decomposition, | alternative explanations, and pq com-

bination. Contextual relations E capture relations among objects, including their relative

positions, relative orientations, grouping relations, and supporting relations. The objects

could be supported by either other objects or the room layout; e.g., a lamp could be sup-

ported by a night stand or the floor.

Finally, a scene configuration is represented by a pg, whose terminals are room layouts

and objects with their attributes and relations. As shown in Figure 2.2, a pg can be decom-

posed as pg “ ppgf , pggq, where pgf and pgg denote the functional part and geometric part
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of the pg, respectively. E P pgg denotes the contextual relations in the terminal layer.

2.1.3 Probabilistic Formulation

The objective of the holistic scene parsing is to find an optimal pg that represents all the

contents and relations observed in the scene. Given an input RGB image I, the optimal pg

could be derived by an MAP estimator,

pppg|Iq9pppgq ¨ ppI|pgq (2.1)

9pppgf q ¨ pppgg|pgf q ¨ ppI|pggq (2.2)

“
1

Z
exp

 

´Eppgf q ´ Eppgg|pgf q ´ EpI|pggq
(

, (2.3)

where the prior probability pppgq is decomposed into pppgf qpppgg|pgf q, and ppI|pgq “

ppI|pggq since the image space is independent of the functional space given the geomet-

ric space. We model the joint distribution with a Gibbs distribution; Eppgf q, Eppgg|pgf q and

EpI|pggq are the corresponding energy terms.

Functional Prior Eppgf q characterizes the prior of the functional aspect in a pg, which

models the hierarchical structure and production rules in the functional space. For produc-

tion rules of alternative explanations | and combination pq, each rule selects child nodes and

the probability of the selections is modeled with a multinomial distribution. The production

rule ¨ is deterministically expanded with probability 1. Given a set of production rules R,

the energy could be written as:

Eppgf q “
ÿ

riPR
´ log ppriq. (2.4)

Geometric Prior Eppgg|pgf q characterizes the prior of the geometric aspect in a pg. Be-

sides modeling the size, position and orientation distribution of each object, we also consider
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two types of contextual relations E “ tEs, Eau among the objects: i) relations Es between

supported objects and their supporting objects (e.g., monitor and desk); ii) relations Ea

between imagined human and objects in an activity group (e.g., relation between imagined

human and the chair in an activity group of reading).

We define different potential functions for each type of contextual relations, constructing

an MRF in the geometric space including four terms:

Eppgg|pgf q “ Escppgg|pgf q ` Esptppgg|pgf q ` Egrpppgg|pgf q ` Ephyppggq. (2.5)

• Size Consistency Esc constrains the size of an object. We model the distribution of

object scale using a non-parametric way, i.e., kernel density estimation (KDE),

Escppgg|pgf q “
ÿ

viPV og
´ log p

`

si|V
o
f

˘

, (2.6)

where si denotes the size of object vi. Empirically, we find that KDE fits better than a

parametric estimation (e.g., multivariate normal), and it is easier to sample from.

• Supporting Constraint Espt characterizes the contextual relations between supported ob-

jects and supporting objects (including floors, walls and ceilings). We model the distribution

with their relative heights and overlapping areas:

Esptppgg|pgf q “
ÿ

pvi,vjqPEs
Kopvi, vjq `Khpvi, vjq ´ λs log p

`

vi, vj | V
l
f , V

o
f

˘

, (2.7)

where Kopvi, vjq “ 1 ´ areapvi Y vjq{areapviq defines the overlapping ratio in xy-plane, and

Khpvi, vjq defines the relative height between the lower surface of vi and the upper surface

of vj. Kop¨q and Khp¨q is 0 if supporting object is floor and wall, respectively. ppvi, vj|V
l
f , V

o
f q

is the prior frequency of the supporting relation modeled by multinoulli distributions. λs is

a balancing constant.

• Human-Centric Grouping Constraint Egrp. For each activity group, we imagine the

invisible and latent human poses to help parse and understand the scene. The intuition is that
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the indoor scenes are designed to serve human daily activities, thus the indoor images should

be jointly interpreted by the observed entities and the unobservable human activities. This

is known as the Dark Matter [XTZ13] in computer vision that drives the visible components

in the scene. Prior methods on scene parsing often merely model the object-object relations.

In this work, we go beyond passive observations to model the latent human-object relations,

thereby proposing a human-centric grouping relationship and a joint inference algorithm

over the visible scene and invisible latent human context. Specifically, for each activity

group v P V a
f , we define correspondent imagined human with a six tuple ă y, µ, t, r, s, µ̃ ą,

where y is the activity type, µ P R25ˆ3 is the mean pose of activity type y, t denotes the

translation, r denotes the rotation, s denotes the scale, and µ̃ is the imagined position to

place a person: µ̃ “ µ ¨ r ¨ s ` t. The energy among the imagined human and objects is

defined as:

Egrpppgg|pgf q “
ÿ

viPV af
Egrppµ̃i|viq

“
ÿ

viPV af

ÿ

vjPchpviq
Ddpµ̃i, νj; d̄q `Dhpµ̃i, νj; h̄q `Dopµ̃i, νj; ōq,

(2.8)

where chpviq denotes the set of child nodes of vi, νj denotes the 3D position of vj. Ddp¨q,

Dhp¨q and Dop¨q denote geometric distances, heights and orientation differences, respectively,

calculated by the center of the imagined human pose to the object center subtracted by their

mean (i.e., d̄, h̄ and ō). Figure 2.3 shows some examples of the imagined human.

• Physical Constraints: Additionally, in order to avoid violating physical laws during

parsing, we define the physical constraints Ephyppggq to penalize physical violations. Exceed-

ing the room cuboid or overlapping among the objects are defined as violations. This term

is formulated as:

Ephyppggq “
ÿ

viPV og
p
ÿ

vjPV og zvi
Oopvi, vjq `

ÿ

vjPV lg
Olpvi, vjqq, (2.9)

where Oop¨q denotes the overlapping area between objects, and Olp¨q denotes the area of

objects exceeding the layout.
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Figure 2.3: Illustration of imagined human in scene parsing. We learn the distribution of
the human-object relation and utilize it to sample human poses.

Likelihood EpI|pggq characterizes the similarity between the observed image and the ren-

dered image generated by the parsing results. Since there is still a difference between the

two images due to various lighting conditions, textures, and material properties, we solve

the problem in an analysis-by-synthesis fashion. By combining generative models and dis-

criminative models, this approach tries to reverse-engineer the hidden factors that generate

the observed image.

Specifically, we first use discriminative methods to project the original image I to various

feature spaces. In this work, we directly estimate three intermediate images including the

depth map ΦdpIq, surface normal map ΦnpIq and object segmentation map ΦmpIq, as the

feature representation of the observed image I.

Meanwhile, a pg inferred by our method represents the 3D structure of the observed im-

age. Thus, we can use the inferred pg to reconstruct image I 1, and recover the corresponding

depth map ΦdpI
1q, surface normal map ΦnpI

1q, and object segmentation map ΦmpI
1q through

a forward graphics rendering.

Finally, we compute the likelihood term by comparing these rendered results from the

generative model with the directly estimated results calculated by the discriminative models.

Specifically, the likelihood is computed by pixel-wise differences between the two sets of maps,

EpI|pggq “ DppΦdpIq,ΦdpI
1
qq `DppΦnpIq,ΦnpI

1
qq `DppΦmpIq,ΦmpI

1
qq, (2.10)

where function Dpp¨q indicates the summation of pixel-wise Euclidean distances between the

two maps.
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2.1.4 Learning

The learning process contains two major steps: i) collecting the statistics of scene categories,

object categories, object sizes and supporting relations from SUN RGB-D dataset [SLX15]; ii)

collecting the statistics of grouping occurrences and the geometric relations between objects

and human from Watch-n-Patch [WZS15].

Using SUN RGB-D, we model the prior of scene types, object categories and support

relations by multinoulli distributions. For example, a lamp is supported by the floor with

a probability of 0.4 and by a desk with a probability of 0.2. The branching probability is

simply counting the frequency of each alternative choice. The distribution of the object sizes

is learned via non-parametric KDE.

The human-centric grouping occurrence and human-object interactions in 3D space are

learned from the Watch-n-Patch. This dataset collects the RGB-D videos of human activities

in offices and kitchens. Since some activities are irrelevant with objects, we learn the activities

of ’reading’, ’play-computer’, ’take-item’ and ’put-down-item’ in all the office videos. For

each activity, we first extract key frames from each sequence with group activity labels.

Then we compute the occurrence frequency of the objects around human within a distance

threshold, and model the prior of object category using a multinomial distribution. The

geometric relations between the objects and humans are similarly learned by fitting normal

distributions of relative distance, height, and orientation between each joint of a human pose

and the object center.

2.1.5 Inference

Given a single RGB image as the input, the goal in the inference phrase is to find the optimal

pg that best explains the hidden factors that generate the observed image while recovering

the 3D scene structure.

The inference process includes three major steps.

• Room geometry estimation: estimate the room geometry by predicting the 2D room
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layout and the camera parameter, and projecting the estimated 2D layout to 3D. Details are

provided in Section 2.1.5.1.

• Objects initialization: detect objects and retrieve CAD models correspondingly with

the most similar appearance, then roughly estimate their 3D poses, positions, sizes, and

initialize the support relations. See Section 2.1.5.2.

• Joint inference: optimize the objects, layout and hidden human context in the 3D

scene in an analysis-by-synthesis fashion by maximizing the posterior probability of the pg.

Details are provided in Section 2.1.5.3.

2.1.5.1 Room Geometry Estimation

Although recent approaches [ISS17a, LBM17, ZLY17] are capable of generating a relatively

robust prediction of the 2D layout using CNN features, 3D layout estimations are still in-

accurate due to its sensitivity to noises of camera parameter estimation. To address the

inconsistency between the 2D layout estimation and camera parameter estimation, we de-

sign a deep neural network to estimate the 2D layout, and use the layout heatmap to estimate

the camera parameter.

2D Layout Estimation: Similar to [LBM17], we represent the 2D layout with its room

layout type and keypoint positions. It optimizes the cost function that incorporates the

Euclidean loss for layout heatmap regression and the cross-entropy loss for room type es-

timation. Instead of adopting the SegNet [BKC17] as a basic network module, we use the

“stacked hourglass” network [NYD16] as our basic network architecture. It addresses the

keypoint estimation problem very well and achieves the state-of-the-art performance in 2D

layout estimation. It addresses the keypoint estimation problem very well and achieves the

state-of-the-art performance in 2D layout estimation.

Camera Parameter: Traditional geometry-based method [HHF09] computes the camera

parameter by estimating the vanishing points from the observed image, which is sensitive to
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local noises and thus unstable in many indoor scenes. Inspired by [WXL16], we propose a

learning-based method that uses the keypoints heatmaps to predict the camera parameters,

i.e., focal length, the pitch, yaw and roll of the camera. Since φ is incorporated into the

evaluation of room layout, we estimate the remaining three variables by stacking four FC

layers (1024-128-16-3) on the keypoint heatmaps. Similarly, we estimate the scene category

Fc by stacking three FC layers (512-16-1) on the keypoint heatmaps.

3D Layout Initialization: Using the estimated 2D layout and camera parameters, we

construct a 3D room as a cuboid by projecting the four corners of the 2D layout to 3D. We

assume the camera is 1.2 meters high, and the ceiling is 3.0 meters high. For the convenience

of stochastic inference, we translate and rotate the room layout so that one of the visible room

corners is at the origin of the world coordinate system. In our method, camera parameter

estimation and 2D layout estimation share the same low-level features, which could largely

avoid the inaccuracy that local noise brings to the camera parameter, thus improving the

performance of 3D layout estimation.

2.1.5.2 Objects Initialization

We fine-tune the Soft-NMS [BSC17] to detect 2D bounding boxes as our 2D object proposals.

To initialize the 3D objects, we retrieve the most similar CAD models and initialize their

3D poses, sizes, and positions.

Model Retrieval: We consider all the models in the ShapeNetSem repository [CFG15,

SCH15] and render each model from 16 ˆ 3 “ 48 viewpoints consisting of uniformly sam-

pled 16 azimuth and 3 elevation angles. We extract 7 ˆ 7 features from the ROI-pooling

layer of the fine-tuned Soft-NMS of images in the detected bounding boxes and candidate

rendered images. By ranking the cosine distance between each detected object feature and

rendered image feature in the same object category, we obtain the top-10 CAD models with

corresponding poses.
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Geometric Attributes Estimation: The geometric attributes of an object are repre-

sented by a 9D vector of 3D pose, position, and size, where 3D poses are initialized from

the retrieval procedure. It is hard to recover the original 3D position and size if only given

a 2D object bounding box since i) a 2D point can be projected from an infinite number

of 3D points, and ii) the bounding box corners are not usually on the object. Prior work

roughly project 2D points to 3D and recover the 3D position and size by assuming that all

the objects are on the floor. Such approach shows limitations in complex scenarios.

Without making the above assumption, we estimate the depth of each object by com-

puting the average depth value of the pixels that are in both the detection bounding box

and the segmentation map. Then we compute its 3D position using the depth value. This is

more robust since per-pixel depth estimation error is within a small range even in cluttered

scenes. To avoid the alignment problem of 2D bounding boxes, we initialize the object size

by sampling object sizes from a learned distribution and choose the one with the largest

probability.

Supporting Relation Estimation: For each object vi P V
o
f , we determine the supporting

object by choosing the object or layout v˚j node with minimal supporting energy:

v˚j “ arg min
vj

Kopvi, vjq `Khpvi, vjq ´ λs log ppvi, vj|V
l
f , V

o
f q, vj P pV

l
f , V

o
f q. (2.11)

2.1.5.3 Joint Inference

Given an image I, we first estimate the room geometry, object attributes and relations as

described in the above two subsections. The goal of joint inference is to (1) optimize the

objects and layout; (2) group objects, assign activity label and imagine human pose in each

activity group; and (3) optimize the objects, layout and human pose iteratively.

In each step, we use distinct MCMC processes. Specifically, to travel through non-

differentiable solution spaces, we design Markov Chain dynamics tqo1, q
o
2, q

o
3u for objects,

tql1, q
l
2u for layout, and tqh1 , q

h
2 , q

h
3 u for human pose. Specifically,
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Figure 2.4: The process of joint inference of objects and layout by MCMC with simulated
annealing. The first row contains rendered RGB images (for visualization), the second row
contains rendered surface normal maps. During the joint inference, objects and layout are
optimized iteratively.

• Object Dynamics: Dynamics qo1 adjusts the position of a random object, which trans-

lates the object center in one of the three coordinate directions. Instead of translating the

object center and changing the object size directly, Dynamics qo2 translates one of the six

faces of the cuboid to generate a smoother diffusion. Dynamics qo3 proposes rotation of

the object with a specified angle. Each dynamic can diffuse in two directions, e.g., each

object can translate in direction of ‘`x’ and ‘´x’, or rotate in direction of clockwise and

counterclockwise. By computing the local gradient of P ppg|Iq, the dynamics propose to

move following the direction of the gradient with a proposal probability of 0.8, or the inverse

direction of the gradient with proposal probability of 0.2.

• Layout Dynamics: Dynamics ql1 translates the faces of the layout, which also optimizes

the predefined camera height while translating the floor. Dynamics ql2 proposes to rotate the

layout.

• Human pose Dynamics qh1 , qh2 and qh3 are designed to translate, rotate and scale the

human pose, respectively.

Given a current pg, each dynamic will propose a new pg1 according to a proposal

probability pppg1|pg, Iq. The proposal is accepted according to an acceptance probability

αppg Ñ pg1q defined by the Metropolis-Hasting algorithm [Has70]:

αppg Ñ pg1q “ minp1,
pppg|pg1, Iqpppg1|Iq

pppg1|pg, Iqpppg|Iq
q. (2.12)
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Figure 2.5: Sampled human poses in various indoor scenes. Objects in multiple activity
groups have multiple poses. We visualize the pose with the highest likelihood.

The above three inference steps are summarized in Algorithm 1. Figure 2.4 shows the

process of step (1).

In step (2), we design an algorithm to group objects and assign activity labels. For

each type of activity, there is a major object category which has the highest occurrence

frequency (i.e., chair in activity ‘reading’). Intuitively, the correspondence between objects

and activities should be n-to-n but not n-to-one, which means each object can belong to

several activity groups. In order to find out all possible activity groups, for each type

of activity, we define an activity group around each major object and incorporate nearby

objects (within a distance threshold) with prior larger than 0. For each activity group

vi P V
a
f , the pose of the imagined human is estimated by maximizing the likelihood ppvi|µ̃iq,

which is equivalent to minimize the grouping energy Egrppµ̃i|viq defined in Equation (2.8),

y˚i ,m
˚
i , t

˚
i , r

˚
i , s

˚
i “ arg min

yi,mi,ti,ri,si

Egrppµ̃i|viq, (2.13)

Figure 2.5 shows the results of sampled human poses in various indoor scenes.
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Algorithm 1 Joint inference algorithm.
1: Given Image I, initialized parse graph pginit
2: procedure Step1(V og , V

l
g ) Ź Inference without hidden human context

3: for different temperatures do Ź Different temperatures are adopted in simulated annealing
4: for γ1 iterations do
5: randomly choose layout, apply layout dynamics to optimize layout V lg

6: for each object vi P V
o
g do

7: for γ2 iterations do
8: randomly apply object dynamics to optimize object vi
9: procedure Step2(V af , tµ̃u) Ź Inference of hidden human context

10: group objects and assign activity labels (see last paragraph in Section 2.1.5.3)
11: for each activity group vi P V

a
f do

12: repeat
13: randomly apply human pose dynamics to optimize µ̃i
14: until Epµ̃i|viq converges Ź Maximizing grouping energy in Equation (2.13)

15: procedure Step3(V og , V
l
g , tµ̃u) Ź Iterative inference of whole parse graph

16: for different temperatures do
17: for γ3 iterations do
18: randomly choose layout, objects or human pose
19: apply random dynamics to minimize P ppg|Iq

20: Return pgoptimized

2.1.6 Experiments

We use the SUN RGB-D dataset [SLX15] to evaluate our approach on 3D scene parsing and

reconstruction. It has 47 scene categories with high-quality 3D bounding box annotations

for most of the 3D objects, as well as 3D room corners for most of the scenes. It also provides

benchmarks for various 3D scene understanding tasks. The dataset has 5050 testing images

and 10,355 images in total. Although it provides RGB-D data, we only use the RGB images

as the input for training and testing. The point cloud is further generated using ground-truth

depth images. Figure 2.6 shows some qualitative parsing results (top 20%).

We evaluate our method on three major tasks: i) 3D layout estimation, ii) 3D object

detection, and iii) holistic scene understanding with all the 5050 testing images of SUN RGB-

D across all scene categories. The capability of generalization to all the scene categories is

difficult for most of the conventional methods due to the inaccuracy of camera parameter

estimation and severe sensitivity to the occlusions in cluttered scenes. In this work, we

alleviate it by using the proposed learning-based camera parameter estimation and a novel

method to initialize the geometric attributes. In addition, we also achieve the state-of-the-art

results in 2D layout estimation on LSUN dataset [ZYS15] and Hedau dataset [HHF09].

24



Implementation Details: For 2D object detection, we fine-tune the detector (Soft-NMS [BSC17])

on SUN RGB-D with 30 object categories. Since [ZYS15] and [HHF09] have no ground-truth

of the camera parameter, we train the layout estimation module using [ZYS15] as the initial

model, followed by using the feature of the heatmap to further train camera parameter and

scene category on SUN RGB-D. During the initialization and joint inference process, we use

the depth estimation model as described in [LRB16], surface normal estimation in [ZSY17a],

and semantic segmentation in [LMS17]. These models are trained on the training set of the

SUN RGB-D or NYU v2 dataset [SHK12] (included in the SUN RGB-D). Here, we further

incorporate human context inference on the subset of offices and skip it on other scenes.

During joint inference, we fix the scene category, object categories and support relations to

reduce the computational complexity. We used OpenGL [SG09] to render the depth, surface

normal and segmentation map. Rendering each map takes about 1 second. On average, our

joint inference process takes about one hour for each image using a single CPU core.

Evaluation of 3D Layout Estimation: The 3D room layout is optimized using the

proposed joint inference. We compare the estimation by our method (with and without joint

inference) with 3DGP [CCP13]. Following the evaluation protocal defined in [SLX15], we

calculated the average intersection-over-union (IoU) between the free space from the ground

truth and the free space estimated by our method. Table 2.1 shows our method outperforms

3DGP by a large margin. We also improve the performance by 8.2% after jointly inferring the

Table 2.1: Quantitative comparisons of 3D scene parsing and reconstruction on SUN RGB-D
dataset.

Method # of image
3D Layout Estimation Holistic Scene Understanding

IoU Pg Rg Rr IoU
3DGP [CCP13] 5050 19.2 2.1 0.7 0.6 13.9
Ours (init.) 5050 46.7 25.9 15.5 12.2 36.6
Ours (joint.) 5050 54.9 37.7 23.0 18.3 40.7
3DGP [CCP13] 749 33.4 5.3 2.7 2.1 34.2
IM2CAD [ISS17a] 484 62.6 - - - 49.0
Ours (init.) 749 64.2 29.7 17.3 14.4 47.1
Ours (joint.) 749 66.4 40.5 26.8 21.7 52.1
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Table 2.2: Comparisons of 3D object detection on SUN RGB-D dataset.

Method bed chair sofa table desk toilet fridge sink bathtub bookshelf counter door dresser lamp tv mAP
[CCP13] 5.62 2.31 3.24 1.23 - - - - - - - - - - - -
Ours (init.) 45.55 5.91 23.64 4.20 2.50 1.91 14.00 2.12 0.55 2.16 0.34 0.01 5.69 1.12 0.62 7.35
Ours (joint.) 58.29 13.56 28.37 12.12 4.79 16.50 15.18 2.18 2.84 7.04 1.6 1.56 13.71 2.41 1.04 12.07

objects and layout, demonstrating the usefulness of integrating the joint inference process.

Since IM2CAD [ISS17a] manually selected 484 images (from 794 living rooms and bed-

rooms) from the dataset without releasing the image list, we compare our method with

IM2CAD on the entire set of living rooms and bedrooms. Table 2.1 shows our method

surpasses IM2CAD, especially after incorporating the joint inference process.

Evaluation of 3D Object Detection: We evaluate our 3D object detection results using

the metrics defined in [SLX15]. We compute the mean average precision (mAP) using the 3D

IoU between the predicted and ground truth 3D bounding boxes. In the absence of depth,

we adjust threshold IoU from 0.25 (evaluation setting with depth as the input) to 0.15 and

report our results in Table 2.2. Only 15 out of 30 object categories are presented here due

to the limited size. The results indicate our method not only exceeds the detection score

by a significant margin but also makes it possible to evaluate the entire object categories.

Note that although IM2CAD also evaluates the detection, they use the metric related to a

specified distance threshold. Here, we also compare with IM2CAD on the subset with this

Table 2.3: Ablative analysis of our method on SUN RGB-D dataset. We evaluate on holistic
scene understanding under different settings. We denote support relation as C1, physical
constraint as C2 and human imagination as C3. Similarly, we denote the setting of only
optimizing the layout during inference as S4, only optimizing the objects during inference as
S5.

Setting w/o C1 w/o C2 w/o C3 w/o (C1, C2, C3) S4 S5 All
IoU 42.3 41.3 43.8 38.4 39.4 36.3 44.7
Pg 29.3 23.5 32.1 19.4 14.9 28.4 34.4
Rg 17.4 15.6 20.4 12.4 11.2 19.7 24.1
Rr 14.1 10.5 16.5 8.7 8.6 13.3 19.2
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special metric rather than IoU threshold. We are able to obtain an mAP of 80.2%, higher

than an mAP of 74.6% reported in the IM2CAD.

Evaluation of Holistic Scene Understanding: We estimate the whole 3D scene in-

cluding objects and room layout. Using the metrics proposed in [SLX15], we evaluate the

geometric precision Pg, geometric recall Rg, semantic recall Rr with the IoU threshold set to

0.15. We also evaluate the IoU between the free space (3D voxels inside the room polygon

but outside any object bounding box) of ground truth and estimation. Table 2.1 shows that

we improve the previous approaches in a large scale. Moreover, we improve the initialization

result by 12.2% on geometric precision, 7.5% on geometric recall, 6.1% on semantic recall

and 4.1% on free space estimation. The improvement of total scene understanding directly

reflects that our joint inference process could largely improve the performance of each task.

Using the same setting with 3D layout estimation, we compare with IM2CAD [ISS17a] and

improve the free space IoU by 3.1%.

Ablative Analysis: The proposed HSG incorporates several key components including

supporting relations, physics constraints and latent human contextual relations. To analyze

how each component would influence the final results, as well as how much the joint inference

process would benefit each task, we conduct the ablative analysis on holistic scene under-

standing under different settings, through turning on and off certain components or skipping

certain steps during joint inference. The experiments are tested on the subset of offices where

we incorporate the latent human context. Table 2.3 summarizes the results. Among all the

energy terms we incorporate, physical constraints influence the performance the most, which

demonstrates the importance of the physical common sense during inference. It also reflects

the efficiency of joint inference since the performances decline by a large margin without the

iterative joint inference.
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Figure 2.6: Qualitative results of our method on SUN RGB-D dataset. The joint inference
significantly improves the performance over individual modules.

2.1.7 Conclusion

We present an analysis-by-synthesis framework to recover the 3D structure of an indoor scene

from a single RGB image using a stochastic grammar model integrated with latent human

context, geometry and physics. We demonstrate the effectiveness of our algorithm in three

perspectives: i) the joint inference algorithm significantly improves results in various tasks,

ii) our method outperforms other methods in 3D layout estimation, 3D object detection,

and holistic scene understanding, and iii) ablative analysis shows each of module plays an

important role in the whole framework. In general, we believe this will be a step towards a

unifying framework for the holistic 3D scene understanding.
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2.1.8 Appendix: Additional Results
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Figure 2.7: Additional qualitative parsing results.
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Figure 2.8: Additional qualitative parsing results.
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Figure 2.9: Additional qualitative parsing results.
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Figure 2.10: Additional qualitative parsing results.
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2.2 Unifying 3D Object, Layout, and Camera Pose Estimation

Holistic 3D indoor scene understanding refers to jointly recovering the i) object bounding

boxes, ii) room layout, and iii) camera pose, all in 3D. The existing methods either are

ineffective or only tackle the problem partially.

In this section, we propose an end-to-end model that simultaneously solves all three

tasks in real-time given only a single RGB image. The essence of the proposed method is

to improve the prediction by i) parametrizing the targets (e.g., 3D boxes) instead of directly

estimating the targets, and ii) cooperative training across different modules in contrast to

training these modules individually. Specifically, we parametrize the 3D object bounding

boxes by the predictions from several modules, i.e., 3D camera pose and object attributes.

The proposed method provides two major advantages: i) The parametrization helps maintain

the consistency between the 2D image and the 3D world, thus largely reducing the prediction

variances in 3D coordinates. ii) Constraints can be imposed on the parametrization to train

different modules simultaneously. We call these constraints ”cooperative losses” as they

enable the joint training and inference. We employ three cooperative losses for 3D bounding

boxes, 2D projections, and physical constraints to estimate a geometrically consistent and

physically plausible 3D scene. Experiments on the SUN RGB-D dataset shows that the

proposed method significantly outperforms prior approaches on 3D object detection, 3D

layout estimation, 3D camera pose estimation, and holistic scene understanding.

2.2.1 Introduction

Holistic 3D scene understanding from a single RGB image is a fundamental yet challenging

computer vision problem, while humans are capable of performing such tasks effortlessly

within 200 ms [Pot75, Pot76, SO94, TFM96]. The primary difficulty of the holistic 3D scene

understanding lies in the vast, but ambiguous 3D information attempted to recover from a

single RGB image. Such estimation includes three essential tasks:

‚ The estimation of the 3D camera pose that captures the image. This component helps
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Figure 2.11: Overview of the proposed framework for cooperative holistic scene understand-
ing. (a) We first detect 2D objects and generate their bounding boxes, given a single RGB
image as the input, from which (b) we can estimate 3D object bounding boxes, 3D room lay-
out, and 3D camera pose. The blue bounding box is the estimated 3D room layout. (c) We
project 3D objects to the image plane with the learned camera pose, forcing the projection
from the 3D estimation to be consistent with 2D estimation.

to maintain the consistency between the 2D image and the 3D world.

‚ The estimation of the 3D room layout. Combining with the estimated 3D camera pose,

it recovers a global geometry.

‚ The estimation of the 3D bounding boxes for each object in the scene, recovering the

local details.

Most current methods either are inefficient or only tackle the problem partially. Specifi-

cally,

‚ Traditional methods [GHK10, ZZ11, ZZ13, CCP13, SFP13, ZST14, ISS17a, HQZ18]

apply sampling or optimization methods to infer the geometry and semantics of indoor

scenes. However, those methods are computationally expensive; it usually takes a long

time to converge and could be easily trapped in an unsatisfactory local minimum, es-

pecially for cluttered indoor environments. Thus both stability and scalability become

issues.

‚ Recently, researchers attempt to tackle this problem using deep learning. The most

straightforward way is to directly predict the desired targets (e.g., 3D room layouts

or 3D bounding boxes) by training the individual modules separately with isolated
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losses for each module. Thereby, the prior work [MAF17, LBM17, KMT17, KLR18,

ZCS18, LYC18] only focuses on the individual tasks or learn these tasks separately

rather than jointly inferring all three tasks, or only considers the inherent relations

without explicitly modeling the connections among them [TGF18].

‚ Another stream of approach takes both an RGB-D image and the camera pose as the

input [LFU13, SX14, SX16, SYZ17a, DL17, ZLH17, QLW18, LG17, ZBK17], which

provides sufficient geometric information from the depth images, thereby relying less

on the consistency among different modules.

In this work, we aim to address the missing piece in the literature: to recover a geomet-

rically consistent and physically plausible 3D scene and jointly solve all three tasks in an

efficient and cooperative way, only from a single RGB image. Specifically, we tackle three

important problems:

1. 2D-3D consistency A good solution to the aforementioned three tasks should main-

tain a high consistency between the 2D image plane and the 3D world coordinate. How

should we design a method to achieve such consistency?

2. Cooperation Psychological studies have shown that our biologic perception system is

extremely good at rapid scene understanding [SO94], particularly utilizing the fusion

of different visual cues [LMJ95, Jac02]. Such findings support the necessities of co-

operatively solving all the holistic scene tasks together. Can we devise an algorithm

such that it can cooperatively solve these tasks, making different modules reinforce each

other?

3. Physically Plausible As humans, we excel in inferring the physical attributes and dy-

namics [KHL17]. Such a deep understanding of the physical environment is imperative,

especially for an interactive agent (e.g., a robot) to navigate the environment or col-

laborate with a human agent. How can the model estimate a 3D scene in a physically

plausible fashion, or at least have some sense of physics?
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To address these issues, we propose a novel parametrization of the 3D bounding box as

well as a set of cooperative losses. Specifically, we parametrize the 3D boxes by the predicted

camera pose and object attributes from individual modules. Hence, we can construct the

3D boxes starting from the 2D box centers to maintain a 2D-3D consistency, rather than

predicting 3D coordinates directly or assuming the camera pose is given, which loses the

2D-3D consistency.

Cooperative losses are further imposed on the parametrization in addition to the direct

losses to enable the joint training of all the individual modules. Specifically, we employ three

cooperative losses on the parametrization to constrain the 3D bounding boxes, projected 2D

bounding boxes, and physical plausibility, respectively:

‚ The 3D bounding box loss encourages accurate 3D estimation.

‚ The differentiable 2D projection loss measures the consistency between 3D and 2D

bounding boxes, which permits our networks to learn the 3D structures with only 2D

annotations (i.e., no 3D annotations are required). In fact, we can directly supervise

the learning process with 2D objects annotations using the common sense of the object

sizes.

‚ The physical plausibility loss penalizes the intersection between the reconstructed 3D

object boxes and the 3D room layout, which prompts the networks to yield a physically

plausible estimation.

Figure 2.11 shows the proposed framework for cooperative holistic scene understanding.

Our method starts with the detection of 2D object bounding boxes from a single RGB

image. Two branches of convolutional neural networks are employed to learn the 3D scene

from both the image and 2D boxes: i) The global geometry network (GGN) learns the global

geometry of the scene, predicting both the 3D room layout and the camera pose. ii) The local

object network (LON) learns the object attributes, estimating the object pose, size, distance

between the 3D box center and camera center, and the 2D offset from the 2D box center to

the projected 3D box center on the image plane. The details are discussed in Section 2.2.2.
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By combining the camera pose from the GGN and object attributes from the LON, we can

parametrize 3D bounding boxes, which grants jointly learning of both GGN and LON with

2D and 3D supervisions.

Another benefit of the proposed parametrization is improving the training stability by

reducing the variance of the 3D boxes prediction, due to that i) the estimated 2D offset has

relatively low variance, and ii) we adopt a hybrid of classification and regression method to

estimate the variables of large variances, inspired by [RHG15, MAF17, QLW18].

We evaluate our method on SUN RGB-D Dataset [SLX15]. The proposed method outper-

forms previous methods on four tasks, including 3D layout estimation, 3D object detection,

3D camera pose estimation, and holistic scene understanding. Our experiments demonstrate

that a cooperative method performing holistic scene understanding tasks can significantly

outperform existing methods tackling each task in isolation, further indicating the necessity

of joint training.

Our contributions are four-fold. i) We formulate an end-to-end model for 3D holistic

scene understanding tasks. The essence of the proposed model is to cooperatively estimate

3D room layout, 3D camera pose, and 3D object bounding boxes. ii) We propose a novel

parametrization of the 3D bounding boxes and integrate physical constraint, enabling the

cooperative training of these tasks. iii) We bridge the gap between the 2D image plane

and the 3D world by introducing a differentiable objective function between the 2D and 3D

bounding boxes. iv) Our method significantly outperforms the state-of-the-art methods and

runs in real-time.

2.2.2 Method

In this section, we describe the parametrization of the 3D bounding boxes and the neural

networks designed for the 3D holistic scene understanding. The proposed model consists

of two networks, shown in Figure 2.12: a global geometric network (GGN) that estimates

the 3D room layout and camera pose, and a local object network (LON) that infers the

attributes of each object. Based on these two networks, we further formulate differentiable
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(a) Network architecture (b) 3D box parametrization
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Figure 2.12: Illustration of (a) network architecture and (b) parametrization of 3D object
bounding box.

loss functions to train the two networks cooperatively.

2.2.2.1 Parametrization

3D Objects We use the 3D bounding box XW P R3ˆ8 as the representation of the es-

timated 3D object in the world coordinate. The 3D bounding box is described by its 3D

center CW P R3, size SW P R3, and orientation RpθW q P R3ˆ3: XW “ hpCW , RpθW q, Sq,

where θ is the heading angle along the up-axis, and hp¨q is the function that composes the

3D bounding box.

Without any depth information, estimating 3D object center CW directly from the 2D

image may result in a large variance of the 3D bounding box estimation. To alleviate

this issue and bridge the gap between 2D and 3D object bounding boxes, we parametrize

the 3D center CW by its corresponding 2D bounding box center CI P R2 on the image

plane, distance D between the camera center and the 3D object center, the camera intrinsic

parameter K P R3ˆ3, and the camera extrinsic parameters Rpφ, ψq P R3ˆ3 and T P R3,

where φ and ψ are the camera rotation angles. As illustrated in Figure 2.12(b), since each

2D bounding box and its corresponding 3D bounding box are both manually annotated,

there is always an offset δI P R2 between the 2D box center and the projection of 3D box
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center. Therefore, the 3D object center CW can be computed as

CW
“ T `DRpφ, ψq´1 K

´1
“

CI ` δI , 1
‰T

›

›

›
K´1 rCI ` δI , 1sT

›

›

›

. (2.14)

Since T becomes ~0 when the data is captured from the first-person view, the above equation

could be written as CW “ ppCI , δI , D, φ, ψ,Kq, where p is a differentiable projection function.

In this way, the parametrization of the 3D object bounding box unites the 3D object

center CW and 2D object center CI , which helps maintain the 2D-3D consistency and re-

duces the variance of the 3D bounding box estimation. Moreover, it integrates both object

attributes and camera pose, promoting the cooperative training of the two networks.

3D Room Layout Similar to 3D objects, we parametrize 3D room layout in the world

coordinate as a 3D bounding box XL P R3ˆ8, which is represented by its 3D center CL P R3,

size SL P R3, and orientation RpθLq P R3ˆ3, where θL is the rotation angle. In this work,

we estimate the room layout center by predicting the offset from the pre-computed average

layout center.

2.2.2.2 Direct Estimations

As shown in Figure 2.12(a), the global geometry network (GGN) takes a single RGB image

as the input, and predicts both 3D room layout and 3D camera pose. Such design is driven

by the fact that the estimations of both the 3D room layout and 3D camera pose rely on

low-level global geometric features. Specifically, GGN estimates the center CL, size SL, and

the heading angle θL of the 3D room layout, as well as the two rotation angles φ and ψ for

predicting the camera pose.

Meanwhile, the local object network (LON) takes 2D image patches as the input. For

each object, LON estimates object attributes including distance D, size SW , heading angle

θW , and the 2D offsets δI between the 2D box center and the projection of the 3D box center.

Direct estimations are supervised by two losses LGGN and LLON. Specifically, LGGN is
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defined as

LGGN “ Lφ ` Lψ ` LCL ` LSL ` LθL , (2.15)

and LLON is defined as

LLON “
1

N

N
ÿ

j“1

pLDj ` LδIj ` LSWj ` LθWj q, (2.16)

where N is the number of objects in the scene. In practice, directly regressing objects’

attributes (e.g., heading angle) may result in a large error. Inspired by [RHG15, MAF17,

QLW18], we adopt a hybrid method of classification and regression to predict the sizes and

heading angles. Specifically, we pre-define several size templates or equally split the space

into a set of angle bins. Our model first classifies size and heading angles to those pre-defined

categories, and then predicts residual errors within each category. For example, in the case

of the rotation angle φ, we define Lφ “ Lφ´cls ` Lφ´reg. Softmax is used for classification

and smooth-L1 (Huber) loss is used for regression.

2.2.2.3 Cooperative Estimations

Psychological experiments have shown that human perception of the scene often relies on

global information instead of local details, known as the gist of the scene [Oli05, OT06b].

Furthermore, prior studies have demonstrated that human perceptions on specific tasks

involve the cooperation from multiple visual cues, e.g., on depth perception [LMJ95, Jac02].

These crucial observations motivate the idea that the attributes and properties are naturally

coupled and tightly bounded, thus should be estimated cooperatively, in which individual

component would help to boost each other.

Using the parametrization described in Section 2.2.2.1, we hope to cooperatively optimize

GGN and LON, simultaneously estimating 3D camera pose, 3D room layout, and 3D object

bounding boxes, in the sense that the two networks enhance each other and cooperate to

make the definitive estimation during the learning process. Specifically, we propose three

cooperative losses which jointly provide supervisions and fuse 2D/3D information into a

41



physically plausible estimation. Such cooperation improves the estimation accuracy of 3D

bounding boxes, maintains the consistency between 2D and 3D, and generates a physically

plausible scene. We further elaborate on these three aspects below.

3D Bounding Box Loss As neither GGN or LON is directly optimized for the accuracy

of the final estimation of the 3D bounding box, learning directly through GGN and LON is

evidently not sufficient, thus requiring additional regularization. Ideally, the estimation of

the object attributes and camera pose should be cooperatively optimized, as both contribute

to the estimation of the 3D bounding box. To achieve this goal, we propose the 3D bounding

box loss with respect to its 8 corners

L3D “
1

N

N
ÿ

j“1

›

›hpCW
j , Rpθjq, Sjq ´X

W˚
j

›

›

2

2
, (2.17)

where XW˚ is the ground truth 3D bounding boxes in the world coordinate. [QLW18]

proposes a similar regularization in which the parametrization of 3D bounding boxes is

different.

2D Projection Loss In addition to the 3D parametrization of the 3D bounding boxes,

we further impose an additional consistency as the 2D projection loss, which maintains the

coherence between the 2D bounding boxes in the image plane and the 3D bounding boxes

in the world coordinate. Specifically, we formulate the learning objective of the projection

from 3D to 2D as

LPROJ “
1

N

N
ÿ

j“1

›

›fpXW
j , R,Kq ´X

I˚
j

›

›

2

2
, (2.18)

where fp¨q denotes a differentiable projection function which projects a 3D bounding box to

a 2D bounding box, and XI˚
j P R2ˆ4 is the 2D object bounding box (either detected or the

ground truth).

Physical Loss In the physical world, 3D objects and room layout should not intersect

with each other. To produce a physically plausible 3D estimation of a scene, we integrate
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the physical loss that penalizes the physical violations between 3D objects and 3D room

layout

LPHY “
1

N

N
ÿ

j“1

`

ReLUpMaxpXW
j q ´MaxpXL

qq ` ReLUpMinpXL
q ´MinpXW

j qq
˘

, (2.19)

where ReLU is the activate function, Maxp¨q / Minp¨q takes a 3D bounding box as the input

and outputs the max/min value along three world axes. By adding the physical constraint

loss, the proposed model connects the 3D environments and the 3D objects, resulting in a

more natural estimation of both 3D objects and 3D room layout.

To summarize, the total loss can be written as

LTotal “ LGGN ` LLON ` λCOOP pL3D ` LPROJ ` LPHYq , (2.20)

where λCOOP is the trade-off parameter that balances the cooperative losses and the direct

losses.

2.2.2.4 Implementation

Both the GGN and LON adopt ResNet-34 [HZR16] architecture as the encoder, which en-

codes a 256x256 RGB image into a 2048-D feature vector. As each of the networks consists

of multiple output channels, for each channel with an L-dimensional output, we stack two

fully connected layers (2048-1024, 1024-L) on top of the encoder to make the prediction.

We adopt a two-step training procedure. First, we fine-tune the 2D detector [DQX17,

BSC17] with 30 most common object categories to generate 2D bounding boxes. The 2D

and 3D bounding box are matched to ensure each 2D bounding box has a corresponding 3D

bounding box.

Second, we train two 3D estimation networks. To obtain good initial networks, both GGN

and LON are first trained individually using the synthetic data (SUNCG dataset [SYZ17a])

with photo-realistically rendered images [ZSY17a]. We then fix six blocks of the encoders of

GGN and LON, respectively, and fine-tune the two networks jointly on SUN RGBD dataset
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Figure 2.13: Qualitative results (top 50%). (Left) Original RGB images. (Middle) Results
projected in 2D. (Right) Results in 3D. Note that the depth input is only used to visualize
the 3D results.

[SLX15].

To avoid over-fitting, a data augmentation procedure is performed by randomly flipping

the images or randomly shifting the 2D bounding boxes with corresponding labels during

the cooperative training. We use Adam [KB14] for optimization with a batch size of 1 and a

learning rate of 0.0001. In practice, we train the two networks cooperatively for ten epochs,

which takes about 10 minutes for each epoch. We implement the proposed approach in

PyTorch [PGC17].

2.2.3 Evaluation

We evaluate our model on SUN RGB-D dataset [SLX15], including 5050 test images and

10335 images in total. The SUN RGB-D dataset has 47 scene categories with high-quality 3D
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room layout, 3D camera pose, and 3D object bounding boxes annotations. It also provides

benchmarks for various 3D scene understanding tasks. Here, we only use the RGB images as

the input. Figure 2.13 shows some qualitative results. We discard the rooms with no detected

2D objects or invalid 3D room layout annotation, resulting in a total of 4783 training images

and 4220 test images.

We evaluate our model on five tasks: i) 3D layout estimation, ii) 3D object detection, iii)

3D box estimation iv) 3D camera pose estimation, and v) holistic scene understanding, all

with the test images across all scene categories. For each task, we compare our cooperatively

trained model with the settings in which we train GGN and LON individually without the

proposed parametrization of 3D object bounding box or cooperative losses. In the individual

training setting, LON directly estimates the 3D object centers in the 3D world coordinate.

3D Layout Estimation Since SUN RGB-D dataset provides the ground truth of 3D

layout with arbitrary numbers of polygon corners, we parametrize each 3D room layout

as a 3D bounding box by taking the output of the Manhattan Box baseline from [SLX15]

with eight layout corners, which serves as the ground truth. We compare the estimation

of the proposed model with three previous methods—3DGP [CCP13], IM2CAD [ISS17a]

and HoPR [HQZ18]. Following the evaluation protocol defined in [SLX15], we compute

the average IoU between the free space of the ground truth and the free space estimated

by the proposed method. Table 2.4 shows our model outperforms HoPR by 2.0%. The

results further show that there is an additional 1.5% performance improvement compared

with individual training, demonstrating the efficacy of our method. Note that IM2CAD

[ISS17a] manually selected 484 images from 794 test images of living rooms and bedrooms.

For fair comparisons, we evaluate our method on the entire set of living room and bedrooms,

outperforming IM2CAD by 2.1%.

3D Object Detection We evaluate our 3D object detection results using the metrics

defined in [SLX15]. Specifically, the MAP is computed using the 3D IoU between the pre-

dicted and the ground truth 3D bounding boxes. In the absence of depth, the threshold of
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Table 2.4: Comparison of 3D room layout estimation and holistic scene understanding on
SUN RGB-D.

Method
3D Layout Estimation Holistic Scene Understanding

IoU Pg Rg Rr IoU
3DGP [CCP13] 19.2 2.1 0.7 0.6 13.9
HoPR [HQZ18] 54.9 37.7 23.0 18.3 40.7
Ours (individual) 55.4 36.8 22.4 20.1 39.6
Ours (cooperative) 56.9 49.3 29.7 28.5 42.9

Table 2.5: Comparisons of 3D object detection on SUN RGB-D.

Method bed chair sofa table desk toilet bin sink shelf lamp mAP
[CCP13] 5.62 2.31 3.24 1.23 - - - - - - -
[HQZ18] 58.29 13.56 28.37 12.12 4.79 16.50 0.63 2.18 1.29 2.41 14.01
Ours (individual) 53.08 7.7 27.04 22.80 5.51 28.07 0.54 5.08 2.58 0.01 15.24
Ours (cooperative) 63.58 17.12 41.22 26.21 9.55 58.55 10.19 5.34 3.01 1.75 23.65

IoU is adjusted from 0.25 (evaluation setting with depth image input) to 0.15 to determine

whether two bounding boxes are overlapped. The 3D object detection results are reported

in Table 2.5. The results indicate our method outperforms HoPR by 9.64% on MAP and

improves the individual training result by 8.41%. Compared with the model using individ-

ual training, the proposed cooperative model makes a significant improvement, especially on

small objects such as bins and lamps. The accuracy of the estimation easily influences 3d de-

tection of small objects; oftentimes, it is nearly impossible for prior approaches to detect. In

contrast, benefiting from the parametrization method and 2D projection loss, the proposed

cooperative model maintains the consistency between 3D and 2D, substantially reducing the

estimation variance. Note that although IM2CAD also evaluates the 3D detection, they use

a metric related to a specific distance threshold. For fair comparisons, we further conduct

experiments on the subset of living rooms and bedrooms, using the same object categories

with respect to this particular metric rather than an IoU threshold. We obtain an MAP of

78.8%, 4.2% higher than the results reported in IM2CAD.

Table 2.6: 3D box estimation results on SUN RGB-D.

bed chair sofa table desk toilet bin sink shelf lamp mIoU
IoU (3D) 33.1 15.7 28.0 20.8 15.6 25.1 13.2 9.9 6.9 5.9 17.4
IoU (2D) 75.7 68.1 74.4 71.2 70.1 72.5 69.7 59.3 62.1 63.8 68.7
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Table 2.7: Comparisons of 3D camera pose estimation on SUN RGB-D.

Method
Mean Absolute Error (degree)
yaw roll

[HHF09] 3.45 33.85
[HQZ18] 3.12 7.60
Ours (individual) 2.48 4.56
Ours (cooperative) 2.19 3.28

3D Box Estimation The 3D object detection performance of our model is determined

by both the 2D object detection and the 3D bounding box estimation. We first evaluate the

accuracy of the 3D bounding box estimation, which reflects the ability to predict 3D boxes

from 2D image patches. Instead of using MAP, 3D IoU is directly computed between the

ground truth and the estimated 3D boxes for each object category. To evaluate the 2D-3D

consistency, the estimated 3D boxes are projected back to 2D, and the 2D IoU is evaluated

between the projected and detected 2D boxes. Results using the full model are reported

in Table 2.6, which shows 3D estimation is still under satisfactory, despite the efforts to

maintain a good 2D-3D consistency. The underlying reason for the gap between 3D and 2D

performance is the increased estimation dimension. Another possible reason is due to the

lack of context relations among objects.

Camera Pose Estimation We evaluate the camera pose by computing the mean absolute

error of yaw and roll between the model estimation and ground truth. As shown in Table 2.7,

comparing with the traditional geometry-based method [HHF09] and previous learning-based

method [HQZ18], the proposed cooperative model gains a significant improvement. It also

improves the individual training performance with 0.29 degree on yaw and 1.28 degree on

roll.

Holistic Scene Understanding Per definition introduced in [SLX15], we further estimate

the holistic 3D scene including 3D objects and 3D room layout on SUN RGB-D. Note that

the holistic scene understanding task defined in [SLX15] misses 3D camera pose estimation

compared to the definition in this work, as the results are evaluated in the world coordinate.

Using the metric proposed in [SLX15], we evaluate the geometric precision Pg, the ge-
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ometric recall Rg, and the semantic recall Rr with the IoU threshold set to 0.15. We also

evaluate the IoU between free space (3D voxels inside the room polygon but outside any

object bounding box) of the ground truth and the estimation. Table 2.4 shows that we

improve the previous approaches by a significant margin. Moreover, we further improve the

individually trained results by 8.8% on geometric precision, 5.6% on geometric recall, 6.6%

on semantic recall, and 3.7% on free space estimation. The performance gain of total scene

understanding directly demonstrates that the effectiveness of the proposed parametrization

method and cooperative learning process.

2.2.3.1 Discussion

In the experiment, the proposed method outperforms the state-of-the-art methods on four

tasks. Moreover, our model runs at 2.5 fps (0.4s for 2D detection and 0.02s for 3D estimation)

on a single Titan Xp GPU, while other models take significantly much more time; e.g.,

[ISS17a] takes about 5 minutes to estimate one image. Here, we further analyze the effects

of different components in the proposed cooperative model, hoping to shed some lights on

how parametrization and cooperative training help the model using a set of ablative analysis.

2.2.3.2 Ablative Analysis

We compare four variants of our model with the full model trained using LSUM:

1. The model trained without the supervision on 3D object bounding box corners (w/o

Table 2.8: The ablative analysis of the proposed cooperative model on SUN RGB-D. We
evaluate holistic scene understanding, 3D mIoU and 2D mIoU of box estimation under
different settings.

Setting S1 S2 S3 S4 S5 S6 Full
IoU 42.8 42.0 41.7 35.9 40.2 43.0 43.3
Pg 41.8 48.3 47.2 28.1 36.3 45.4 46.5
Rg 25.3 30.1 27.5 17.1 22.1 29.7 28.0
Rr 23.8 28.7 26.4 15.6 20.6 27.1 26.7
3D mIoU 14.4 18.2 17.3 9.8 12.7 17.0 17.4
2D mIoU 65.2 60.7 68.5 64.3 65.3 67.7 68.7
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(a) Full model (b) Model without 2D supervision (c) Model without  3D supervision(a) Full model (b) Model without 2D supervision (c) Model without  3D supervision

Figure 2.14: Comparison with two variants of our model.

L3D, S1).

2. The model trained without the 2D supervision (w/o LPROJ, S2).

3. The model trained without the penalty of physical constraint (w/o LPHY, S3).

4. The model trained in an unsupervised fashion where we only use 2D supervision to

estimate the 3D bounding boxes (w/o L3D ` LGGN ` LLON, S4).

Additionally, we compare two variants of training settings: i) the model trained directly

on SUN RGB-D without pre-train (S5), and ii) the model trained with 2D bounding boxes

projected from ground truth 3D bounding boxes (S6). We conduct the ablative analysis over

all the test images on the task of holistic scene understanding. We also compare the 3D

mIoU and 2D mIoU of 3D box estimation. Table 2.8 summarizes the quantitative results.

Experiment S1 and S3 Without the supervision on 3D object bounding box corners or

physical constraint, the performance of all the tasks decreases since it removes the coopera-

tion between the two networks.

Experiment S2 The performance on the 3D detection is improved without the projection

loss, while the 2D mIoU decreases by 8.0%. As shown in Figure 2.14(b), a possible reason

is that the 2D-3D consistency LPROJ may hurt the performance on 3D accuracy compared

with directly using 3D supervision, while the 2D performance is largely improved thanks to

the consistency.
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Experiment S4 The training entirely in an unsupervised fashion for 3D bounding box

estimation would fail since each 2D pixel could correspond to an infinite number of 3D points.

Therefore, we integrate some common sense into the unsupervised training by restricting the

size of the object close to the average size. As shown in Figure 2.14(c), we can still estimate

the 3D bounding box without 3D supervision quite well, although the orientations are usually

not accurate.

Experiment S5 and S6 S5 demonstrates the efficiency of using a large amount of synthetic

training data, and S6 indicates that we can gain almost the same performance even if there

are no 2D bounding box annotations.

2.2.4 Related Work

Single Image Scene Reconstruction Existing 3D scene reconstruction approaches fall

into two streams. i) Generative approaches model the reconfigurable graph structures in gen-

erative probabilistic models [ZZ11, ZZ13, CCP13, LFU13, GH13, ZST14, ZLH17, HQZ18].

ii) Discriminative approaches [ISS17a, TGF18, SYZ17a] reconstruct the 3D scene using the

representation of 3D bounding boxes or voxels through direct estimations. Generative ap-

proaches are better at modeling and inferring scenes with complex context, but they rely

on sampling mechanisms and are always computational ineffective. Compared with prior

discriminative approaches, our model focus on establishing cooperation among each scene

module.

Gap between 2D and 3D It is intuitive to constrain the 3D estimation to be consistent

with 2D images. Previous research on 3D shape completion and 3D object reconstruction

explores this idea by imposing differentiable 2D-3D constraints between the shape and sil-

houettes [WXL16, REM16, YYY16, TM15, WWX17]. [MAF17] infers the 3D bounding

boxes by matching the projected 2D corners in autonomous driving. In the proposed co-

operative model, we introduce the parametrization of the 3D bounding box, together with

a differentiable loss function to impose the consistency between 2D-3D bounding boxes for
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indoor scene understanding.

2.2.5 Conclusion

Using a single RGB image as the input, we propose an end-to-end model that recovers

a 3D indoor scene in real-time, including the 3D room layout, camera pose, and object

bounding boxes. A novel parametrization of 3D bounding boxes and a 2D projection loss

are introduced to enforce the consistency between 2D and 3D. We also design differentiable

cooperative losses which help to train two major modules cooperatively and efficiently. Our

method shows significant improvements in various benchmarks while achieving high accuracy

and efficiency.
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2.3 3D Object Detection with Perspective Points

Detecting 3D objects from a single RGB image is intrinsically ambiguous, thus requiring

appropriate prior knowledge and intermediate representations as constraints to reduce the

uncertainties and improve the consistencies between the 2D image plane and the 3D world

coordinate.

In this section, we address this challenge by proposing to adopt perspective points as a

new intermediate representation for 3D object detection, defined as the 2D projections of

local Manhattan 3D keypoints to locate an object; these perspective points satisfy geometric

constraints imposed by the perspective projection. We further devise PerspectiveNet, an end-

to-end trainable model that simultaneously detects the 2D bounding box, 2D perspective

points, and 3D object bounding box for each object from a single RGB image. Perspec-

tiveNet yields three unique advantages: (i) 3D object bounding boxes are estimated based

on perspective points, bridging the gap between 2D and 3D bounding boxes without the need

of category-specific 3D shape priors. (ii) It predicts the perspective points by a template-

based method, and a perspective loss is formulated to maintain the perspective constraints.

(iii) It maintains the consistency between the 2D perspective points and 3D bounding boxes

via a differentiable projective function. Experiments on SUN RGB-D dataset show that the

proposed method significantly outperforms existing RGB-based approaches for 3D object

detection.

2.3.1 Introduction

If one hopes to achieve a full understanding of a system as complicated as a ner-

vous system, . . . , or even a large computer program, then one must be prepared

to contemplate different kinds of explanation at different levels of description

that are linked, at least in principle, into a cohesive whole, even if linking the

levels in complete details is impractical. — David Marr [Mar82], pp. 20–21

In a classic view of computer vision, David Marr [Mar82] conjectured that the perception
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of a 2D image is an explicit multi-phase information process, involving (i) an early vision

system of perceiving textures [Jul62, ZWM98] and textons [Jul81, ZGW05] to form a primal

sketch as a perceptually lossless conversion from the raw image [GZW03, GZW07], (ii) a

mid-level vision system to construct 2.1D (multiple layers with partial occlusion) [NM90,

WA93, WA94] and 2.5D [MN78] sketches, and (iii) a high-level vision system that recovers

the full 3D [Bin71, Bro81, Kan81]. In particular, he highlighted the importance of different

levels of organization and the internal representation [Bro85].

In parallel, the school of Gestalt Laws [Wer12, WEK12, WFG12, Koh20, Koh38, Wer23,

Wer38, Kof13] and perceptual organization [Low12, Pen87] aims to resolve the 3D recon-

struction problem from a single RGB image without forming the depth cues; but rather,

they often use some sorts of priors—groupings and structural cues [Wal75, BT81] that are

likely to be invariant over wide ranges of viewpoints [Low87], resulting in the birth of the

SIFT feature [Low04]. Later, from a Bayesian perspective at a scene level, such priors, in-

dependent of any 3D scene structures, were found in the human-made scenes, known as the

Manhattan World assumption [CY03]. Importantly, further studies found that such priors

help to improve object detection [CY99].

In this work, inspired by these two classic schools in computer vision, we seek to test the

following two hypotheses using modern computer vision methods: (i) Could an intermediate

representation facilitate modern computer vision tasks? (ii) Is such an intermediate repre-

sentation a better and more invariant prior compared to the priors obtained directly from

specific tasks?

In particular, we tackle the challenging task of 3D object detection from a single RGB

image. Despite the recent success in 2D scene understanding (e.g., [RHG15, HGD17], there is

still a significant performance gap for 3D computer vision tasks based on a single 2D image.

Recent modern approaches directly regress the 3D bounding boxes [CKZ16, MAF17, HQX18]

or reconstruct the 3D objects with specific 3D object priors [KLR18, HQZ18, YHZ18, HS19].

In contrast, we propose an end-to-end trainable framework, PerspectiveNet, that sequentially

estimates the 2D bounding box, 2D perspective points, and 3D bounding box for each object

with a local Manhattan assumption [XF14], in which the perspective points serve as the

53



(a) 2D Bounding Boxes (b) 2D Perspective Points (c) 3D Bounding Boxes

Figure 2.15: Traditional 3D object detection methods directly estimate (c) the 3D object
bounding boxes from (a) the 2D bounding boxes, which suffer from the uncertainties between
the 2D image plane and the 3D world. The proposed PerspectiveNet utilizes (b) the 2D
perspective points as the intermediate representation to bridge the gap. The perspective
points are the 2D perspective projection of the 3D bounding box corners, containing rich
3D information (e.g., positions, orientations). The red dots indicate the perspective points
of the bed that are challenging to emerge based on the visual features, but could be inferred
by the context (correlations and topology) among other perspective points.

intermediate representation, defined as the 2D projections of local Manhattan 3D keypoints

to locate an object.

The proposed method offers three unique advantages. First, the use of perspective points

as the intermediate representation bridges the gap between 2D and 3D bounding boxes

without utilizing any extra category-specific 3D shape priors. As shown in Figure 2.15, it is

often challenging for learning-based methods to estimate the 3D bounding boxes from 2D

images directly; regressing 3D bounding boxes from 2D input is a highly under-constrained

problem and can be easily influenced by appearance variations of shape, texture, lighting,

and background. To alleviate this issue, we adopt the perspective points as an intermediate

representation to represent the local Manhattan frame that each 3D object aligns with.

Intuitively, the perspective points of an object are 3D geometric constraints in the 2D space.

More specifically, the 2D perspective points for each object are defined as the perspective

projection of the 3D object bounding box (concatenated with its center), and each 3D box

aligns within a 3D local Manhattan frame. These perspective points are fused into the 3D

branch to predict the 3D attributes of the 3D bounding boxes.

Second, we devise a template-based method to efficiently and robustly estimate the per-

spective points. Existing methods [NYD16, LBM17, ZCS18, HGD17, SST18] usually exploit
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heatmap or probability distribution map as the representation to learn the location of visual

points (e.g., object keypoint, human skeleton, room layout), relying heavily on the view-

dependent visual features, thus insufficient to resolve occlusions or large rotation/viewpoint

changes in complex scenes; see an example in Figure 2.15 (b) where the five perspective

points (in red) are challenging to emerge from pure visual features but could be inferred by

the correlations and topology among other perspective points. To tackle this problem, we

treat each set of 2D perspective points as the low dimensional embedding of its correspond-

ing set of 3D points with a constant topology; such an embedding is learned by predicting

the perspective points as a mixture of sparse templates. A perspective loss is formulated to

impose the perspective constraints; the details are described in Section 2.3.3.2.

Third, the consistency between the 2D perspective points and 3D bounding boxes can

be maintained by a differentiable projective function; it is end-to-end trainable, from the 2D

region proposals, to the 2D bounding boxes, to the 2D perspective points, and to the 3D

bounding boxes.

In the experiment, we show that the proposed PerspectiveNet outperforms previous meth-

ods with a large margin on SUN RGB-D dataset [SLX15], demonstrating its efficacy on 3D

object detection.

2.3.2 Related Work

3D object detection from a single image Detecting 3D objects from a single RGB

image is a challenging problem, particularly due to the intrinsic ambiguity of the problem.

Existing methods could be categorized into three streams: (i) geometry-based methods that

estimate the 3D bounding boxes with geometry and 3D world priors [ZZ11, ZZ13, CCP13,

LFU13, ZST14]; (ii) learning-based methods that incorporate category-specific 3D shape

prior [ISS17a, HQZ18, HS19] or extra 2.5D information (depth, surface normal, and segmen-

tation) [KLR18, YHZ18, XC18] to detect 3D bounding boxes or reconstruct the 3D object

shape; and (iii) deep learning methods that directly estimates the 3D object bounding boxes

from 2D bounding boxes [CKZ15, CKZ16, MAF17, HQX18]. To make better estimations,
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various techniques have been devised to enforce consistencies between the estimated 3D

and the input 2D image. [HQX18] proposed a two-stage method to learn the 3D objects

and 3D layout cooperatively. [KLR18] proposed a 3D object detection and reconstruction

method using category-specific object shape prior by render-and-compare. Different from

these methods, the proposed PerspectiveNet is a one-stage end-to-end trainable 3D object

detection framework using perspective points as an intermediate representation; the perspec-

tive points naturally bridge the gap between the 2D and 3D bounding boxes without any

extra annotations, category-specific 3D shape priors, or 2.5D maps.

Manhattan World assumption Human-made environment, from the layout of a city

to structures such as buildings, room, furniture, and many other objects, could be viewed

as a set of parallel and orthogonal planes, known as the Manhattan World (MW) assump-

tion [CY99]. Formally, it indicates that most human-made structures could be approximated

by planar surfaces that are parallel to one of the three principal planes of a common orthog-

onal coordinate system. This strict Manhattan World assumption is later extended by a

Mixture of Manhattan Frame (MMF) [SRF14] to represent more complex real-world scenes

(e.g., city layouts, rotated objects). In literature, MW and MMF have been adopted in

vanish points (VPs) estimation and camera calibration [SD04, KDV15], orientation estima-

tion [BRL03, SBL15, GTC15], layout estimation [HHF09, LHK09, HHF10, SHP12, ZCS18],

and 3D scene reconstruction [DLN07, FCS09, XHR13, XF14, RS16, LZZ17]. In this work,

we extend the MW to local Manhattan assumption where the cuboids are aligned with the

vertical (gravity) direction but with arbitrary horizontal orientation (also see [XF14]), and

perspective points are adopted as the intermediate representation for 3D object detection.

Intermediate 3D representation Intermediate 3D representations are bridges that nar-

row the gap and maintain the consistency between the 2D image plane and 3D world. Among

them, 2.5D sketches have been broadly used in reconstructing the 3D shapes [WWX17,

ZZZ18b, ZZZ18a] and 3D scenes [TGF18, HQZ18]. Other recent alternative intermediate

3D representations include: (i) [WXL16] uses pre-annotated and category-specific object
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keypoints as an intermediate representation, and (ii) [TSF18] uses projected corners of 3D

bounding boxes in learning the 6D object pose. In this work, we explore the perspective

points as an intermediate representation of 2D and 3D bounding boxes, and provide an

efficient learning framework for 3D object detection.

2.3.3 Learning Perspective Points for 3D Object Detection

2.3.3.1 Overall Architecture

As shown in Figure 2.16, the proposed PerspectiveNet contains a backbone architecture for

feature extraction over the entire image, a region proposal network (RPN) [RHG15] that

proposes regions of interest (RoIs), and a network head including three region-wise parallel

branches. For each proposed box, its RoI feature is fed into the three network branches to

predict: (i) the object class and the 2D bounding box offset, (ii) the 2D perspective points

(projected 3D box corners and object center) as a weighted sum of predicted perspective

templates, and (iii) the 3D box size, orientation, and its distance from the camera. Detected

3D boxes are reconstructed by the projected object center, distance, box size, and rotation.

The overall architecture of the PerspectiveNet resembles the R-CNN structure, and we refer

readers to [RHG15, Gir15, HGD17] for more details of training R-CNN detectors.

During training, we define a multi-task loss on each proposed RoI as

L “ Lcls ` L2D ` Lpp ` Lp ` L3D ` Lproj, (2.21)

where the classification loss Lcls and 2D bounding box loss L2D belong to the 2D bounding

box branch and are identical to those defined in 2D R-CNNs [RHG15, HGD17]. Lpp and

Lp are defined on the perspective point branch (Section 2.3.3.2), L3D is defined on the 3D

bounding box branch (see Section 2.3.3.3), and the Lproj is defined on maintaining the 2D-3D

projection consistency (see Section 2.3.3.4).
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Figure 2.16: The proposed framework of the PerspectiveNet. Given an RGB Image, the
backbone of PerspectiveNet extracts global features and propose candidate 2D bounding
boxes (RoIs). For each proposed box, its RoI feature is fed into three network branches to
predict: (i) the object class and the 2D box offset, (ii) 2D perspective templates (projected
3D box corners and object center) and the corresponding coefficients, and (iii) the 3D box
size, orientation, and its distance from the camera. Detected 3D boxes are reconstructed
by the projected object center, distance, box size, and rotation. By projecting the detected
3D boxes to 2D and comparing them with 2D perspective points, the network imposes and
learns a consistency between the 2D inputs and 3D estimations.

2.3.3.2 Perspective Point Estimation

The perspective point branch estimates the set of 2D perspective points for each RoI. For-

mally, the 2D perspective points of an object are the 2D projections of local Manhattan 3D

keypoints to locate that object, and they satisfy certain geometric constraints imposed by

the perspective projection. In our case, the perspective points (Figure 2.15(b)) include the

2D projections of the 3D bounding box corners and the 3D object center. The perspective

points are predicted using a template-based regression and learned by a mean squared error

and a perspective loss detailed below.

Template-based Regression Most of the existing methods [NYD16, LBM17, ZCS18,

HGD17, SST18] estimate visual keypoints with heatmaps, where each map predicts the

location for a certain keypoint. However, predicting perspective points by heatmaps has two

major problems: (i) Heatmap prediction for different keypoints is independent, thus fail to
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capture the topology correlations among the perspective points. (ii) Heatmap prediction for

each keypoint relies heavily on the visual feature such as corners, which may be difficult to

detect (see an example in Figure 2.15(b)). In contrast, each set of 2D perspective points can

be treated as a low dimensional embedding of a set of 3D points with a particular topology,

thus inferring such points relies more on the relation and topology among the points instead

of just the visual features.

To tackle these problems, we avoid dense per-pixel predictions. Instead, we estimate the

perspective points by a mixture of sparse templates [OF96, WSG10]. The sparse templates

are more robust when facing unfamiliar scenes or objects. Ablative experiments show that

the proposed template-based method provides a more accurate estimation of perspective

points than heatmap-based methods; see Section 2.3.5.1.

Specifically, we project both the 3D object center and eight 3D bounding box corners to

2D with camera parameters to generate the ground-truth 2D perspective points Pgt P R2ˆ9.

Since a portion of the perspective points usually lies out of the RoI, we calculate the location

of the perspective points in an extended (doubled) size of RoI and normalize the locations

to r0, 1s.

We predict the perspective points by a linear combination of templates; see Figure 2.17.

The perspective point branch has a C ˆ K ˆ 2 ˆ 9 dimensional output for the templates

T , and a C ˆ K dimensional output for the coefficients w, where K denotes the number

of templates for each class and C denotes the number of object classes. The templates T

is scaled to r0, 1s by a sigmoid nonlinear function, and the coefficients w is normalized by

a softmax function. The estimated perspective points P̂ P RCˆ2ˆ9 can be computed by a

linear combination:

P̂i “
K
ÿ

k“1

wik Tik, @i “ 1, ¨ ¨ ¨ , C. (2.22)

The template design is both class-specific and instance-specific: (i) Class-specific: we

decouple the prediction of the perspective point and the object class, allowing the network

to learn perspective points for every class without competition among classes. (ii) Instance-

specific: the templates are inferred for each RoI; hence, they are specific to each object
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=<latexit sha1_base64="ZTH9Tt7qKoMWghMFBaCMyt66iTQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoBeh4MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjf3O0+oNI/lg5km6Ed0JHnIGTVWat4OyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEeGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/hPuMpw==</latexit><latexit sha1_base64="ZTH9Tt7qKoMWghMFBaCMyt66iTQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoBeh4MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjf3O0+oNI/lg5km6Ed0JHnIGTVWat4OyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEeGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/hPuMpw==</latexit><latexit sha1_base64="ZTH9Tt7qKoMWghMFBaCMyt66iTQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoBeh4MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjf3O0+oNI/lg5km6Ed0JHnIGTVWat4OyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEeGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/hPuMpw==</latexit><latexit sha1_base64="ZTH9Tt7qKoMWghMFBaCMyt66iTQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoBeh4MVjC/YD2lA220m7drMJuxuhhP4CLx4U8epP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcjf3O0+oNI/lg5km6Ed0JHnIGTVWat4OyhW35i5A1omXkwrkaAzKX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFofOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmX5MhV8iMmFpCmeL2VsLGVFFmbDYlG4K3+vI6aV/WPLfmNa8q9WoeRxHO4Byq4ME11OEeGtACBgjP8ApvzqPz4rw7H8vWgpPPnMIfOJ8/hPuMpw==</latexit>w2<latexit sha1_base64="9n95130QLCLI+T7YnoXdxJzF91k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5IUQY8FLx4r2g9oQ9lsN+3SzSbsTpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK90+D+qBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDK/9TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddKu1zy35t1dVhrVPI4inME5VMGDK2jALTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwAD3I2G</latexit><latexit sha1_base64="9n95130QLCLI+T7YnoXdxJzF91k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5IUQY8FLx4r2g9oQ9lsN+3SzSbsTpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK90+D+qBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDK/9TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddKu1zy35t1dVhrVPI4inME5VMGDK2jALTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwAD3I2G</latexit><latexit sha1_base64="9n95130QLCLI+T7YnoXdxJzF91k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5IUQY8FLx4r2g9oQ9lsN+3SzSbsTpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK90+D+qBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDK/9TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddKu1zy35t1dVhrVPI4inME5VMGDK2jALTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwAD3I2G</latexit><latexit sha1_base64="9n95130QLCLI+T7YnoXdxJzF91k=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5IUQY8FLx4r2g9oQ9lsN+3SzSbsTpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK90+D+qBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDK/9TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddKu1zy35t1dVhrVPI4inME5VMGDK2jALTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwAD3I2G</latexit>

w1<latexit sha1_base64="FD6sTjOXaRMf6LND725ZqrH0exg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2g9oQ9lsN+3SzSbsTpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK908Db1CuuDV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmlf1jy35t1dVRrVPI4inME5VMGDOjTgFprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwJYjYU=</latexit><latexit sha1_base64="FD6sTjOXaRMf6LND725ZqrH0exg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2g9oQ9lsN+3SzSbsTpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK908Db1CuuDV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmlf1jy35t1dVRrVPI4inME5VMGDOjTgFprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwJYjYU=</latexit><latexit sha1_base64="FD6sTjOXaRMf6LND725ZqrH0exg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2g9oQ9lsN+3SzSbsTpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK908Db1CuuDV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmlf1jy35t1dVRrVPI4inME5VMGDOjTgFprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwJYjYU=</latexit><latexit sha1_base64="FD6sTjOXaRMf6LND725ZqrH0exg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2g9oQ9lsN+3SzSbsTpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK908Db1CuuDV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmlf1jy35t1dVRrVPI4inME5VMGDOjTgFprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwJYjYU=</latexit>

w3
<latexit sha1_base64="VF7qFgH0Kvo6haydZ/Ml3XD0A3s=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KooMeCF48V7Qe0oWy2m3bpZhN2J0oJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6f+Rb9ccWvuHGSVeDmpQI5Gv/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdI6r3luzbu7rNSreRxFOIFTqIIHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAFYI2H</latexit><latexit sha1_base64="VF7qFgH0Kvo6haydZ/Ml3XD0A3s=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KooMeCF48V7Qe0oWy2m3bpZhN2J0oJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6f+Rb9ccWvuHGSVeDmpQI5Gv/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdI6r3luzbu7rNSreRxFOIFTqIIHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAFYI2H</latexit><latexit sha1_base64="VF7qFgH0Kvo6haydZ/Ml3XD0A3s=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KooMeCF48V7Qe0oWy2m3bpZhN2J0oJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6f+Rb9ccWvuHGSVeDmpQI5Gv/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdI6r3luzbu7rNSreRxFOIFTqIIHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAFYI2H</latexit><latexit sha1_base64="VF7qFgH0Kvo6haydZ/Ml3XD0A3s=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KooMeCF48V7Qe0oWy2m3bpZhN2J0oJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6f+Rb9ccWvuHGSVeDmpQI5Gv/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdI6r3luzbu7rNSreRxFOIFTqIIHV1CHW2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAFYI2H</latexit>

wn
<latexit sha1_base64="zzWw5k9A1fxeI+gI9ZQnGs2bd1w=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2g9oQ9lsN+3SzSbsTpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK908DNShX3Jq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw2s/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbQva55b8+6uKo1qHkcRzuAcquBBHRpwC01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPH17MjcI=</latexit><latexit sha1_base64="zzWw5k9A1fxeI+gI9ZQnGs2bd1w=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2g9oQ9lsN+3SzSbsTpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK908DNShX3Jq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw2s/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbQva55b8+6uKo1qHkcRzuAcquBBHRpwC01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPH17MjcI=</latexit><latexit sha1_base64="zzWw5k9A1fxeI+gI9ZQnGs2bd1w=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2g9oQ9lsN+3SzSbsTpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK908DNShX3Jq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw2s/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbQva55b8+6uKo1qHkcRzuAcquBBHRpwC01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPH17MjcI=</latexit><latexit sha1_base64="zzWw5k9A1fxeI+gI9ZQnGs2bd1w=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2g9oQ9lsN+3SzSbsTpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK908DNShX3Jq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw2s/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbQva55b8+6uKo1qHkcRzuAcquBBHRpwC01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPH17MjcI=</latexit>

+
<latexit sha1_base64="B256yNNwjwHm0r+cuynGV63bF8E=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahIJREBD0WvHhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1PY2Nza3inulvb2Dw6PyscnbR2nimGLxSJW3YBqFFxiy3AjsJsopFEgsBNM7uZ+5wmV5rF8MNME/YiOJA85o8ZKzctBueLW3AXIOvFyUoEcjUH5qz+MWRqhNExQrXuemxg/o8pwJnBW6qcaE8omdIQ9SyWNUPvZ4tAZubDKkISxsiUNWai/JzIaaT2NAtsZUTPWq95c/M/rpSa89TMuk9SgZMtFYSqIicn8azLkCpkRU0soU9zeStiYKsqMzaZkQ/BWX14n7aua59a85nWlXs3jKMIZnEMVPLiBOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MHabOMlQ==</latexit><latexit sha1_base64="B256yNNwjwHm0r+cuynGV63bF8E=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahIJREBD0WvHhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1PY2Nza3inulvb2Dw6PyscnbR2nimGLxSJW3YBqFFxiy3AjsJsopFEgsBNM7uZ+5wmV5rF8MNME/YiOJA85o8ZKzctBueLW3AXIOvFyUoEcjUH5qz+MWRqhNExQrXuemxg/o8pwJnBW6qcaE8omdIQ9SyWNUPvZ4tAZubDKkISxsiUNWai/JzIaaT2NAtsZUTPWq95c/M/rpSa89TMuk9SgZMtFYSqIicn8azLkCpkRU0soU9zeStiYKsqMzaZkQ/BWX14n7aua59a85nWlXs3jKMIZnEMVPLiBOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MHabOMlQ==</latexit><latexit sha1_base64="B256yNNwjwHm0r+cuynGV63bF8E=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahIJREBD0WvHhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1PY2Nza3inulvb2Dw6PyscnbR2nimGLxSJW3YBqFFxiy3AjsJsopFEgsBNM7uZ+5wmV5rF8MNME/YiOJA85o8ZKzctBueLW3AXIOvFyUoEcjUH5qz+MWRqhNExQrXuemxg/o8pwJnBW6qcaE8omdIQ9SyWNUPvZ4tAZubDKkISxsiUNWai/JzIaaT2NAtsZUTPWq95c/M/rpSa89TMuk9SgZMtFYSqIicn8azLkCpkRU0soU9zeStiYKsqMzaZkQ/BWX14n7aua59a85nWlXs3jKMIZnEMVPLiBOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MHabOMlQ==</latexit><latexit sha1_base64="B256yNNwjwHm0r+cuynGV63bF8E=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahIJREBD0WvHhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1PY2Nza3inulvb2Dw6PyscnbR2nimGLxSJW3YBqFFxiy3AjsJsopFEgsBNM7uZ+5wmV5rF8MNME/YiOJA85o8ZKzctBueLW3AXIOvFyUoEcjUH5qz+MWRqhNExQrXuemxg/o8pwJnBW6qcaE8omdIQ9SyWNUPvZ4tAZubDKkISxsiUNWai/JzIaaT2NAtsZUTPWq95c/M/rpSa89TMuk9SgZMtFYSqIicn8azLkCpkRU0soU9zeStiYKsqMzaZkQ/BWX14n7aua59a85nWlXs3jKMIZnEMVPLiBOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MHabOMlQ==</latexit>

+
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Figure 2.17: Perspective point estimation. (a) The perspective points are estimated by a
mixture of templates through a linear combination. Each template encodes geometric cues
including orientations and viewpoints. (b) The perspective loss enforces each set of 2D
perspective points to be the perspective projection of a (vertical) 3D cuboid. For a vertical
cuboid, the projected vertical edges (i.e., ae, bf , cg, and dh) should be parallel or near
parallel (under small camera tilting angles). For 3D parallel lines that are perpendicular to
the gravity direction, the vanishing points of their 2D projections should coincide (e.g., u1
and u2).

instance. The templates are automatically learned for each object instance from data with

the end-to-end learning framework; thus, both the templates and coefficients for each instance

are optimizable and can better fit the training data.

The average mean squared error (MSE) loss is defined as Lpp “ MSEpP̂c, Pgtq. For an

RoI associated with ground-truth class c, Lpp is only defined on the c’s perspective points

during training; perspective point outputs from other classes do not contribute to the loss.

In inference, we rely on the dedicated classification branch to predict the class label to select

the output perspective points.

Perspective Loss Under the assumption that each 3D bounding box aligns with a local

Manhattan frame, we regularize the estimation of the perspective points to satisfy the con-

straint of perspective projection. Each set of mutually parallel lines in 3D can be projected

into 2D as intersecting lines; see Figure 2.17 (b). These intersecting lines should converge

at the same vanishing point. Therefore, the desired algorithm would penalize the distance

between the intersection points from the two sets of intersecting lines. For example in Fig-

ure 2.17 (b), we select line ad and line eh as a pair of lines, bc and fg as another, and compute
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the distance between their intersection point u1 and u2. Additionally, since we assume each

3D local Manhattan frame aligns with the vertical (gravity) direction, we enforce the edges

in gravity direction (i.e., ae, bf , cg, and dh) to be parallel by penalizing the large slope

variance.

The perspective loss is computed as Lp “ Ld1 ` Ld2 ` Lgrav, where Lgrav penalizes the

slope variance in gravity direction, Ld1 and Ld2 penalize the intersection point distance for

the two perpendicular directions along the gravity direction.

2.3.3.3 3D Bounding Box Estimation

Estimating 3D bounding boxes is a two-step process. In the first step, the 3D branch

estimates the 3D attributes, including the distance between the camera center and the 3D

object center, as well as the 3D size and orientation following [HQX18]. Since the perspective

point branch encodes rich 3D geometric features, the 3D attribute estimator aggregates the

feature from perspective point branch with a soft gated function between r0, 1s to improve

the prediction. The gated function serves as a soft-attention mechanism that decides how

much information from perspective points should contribute to the 3D prediction.

In the second step, with the estimated projected 3D bounding boxes center (i.e., the first

estimated perspective point) and the 3D attributes, we compose the 3D bounding boxes by

the inverse projection from the 2D image plane to the 3D world following [HQX18] given

camera parameters.

The 3D loss is computed by the sum of individual losses of 3D attributes and a joint loss

of 3D bounding box L3D “ Ldis ` Lsize ` Lori ` Lbox3d.

2.3.3.4 2D-3D Consistency

In contrast to prior work [WXL16, REM16, YYY16, MAF17, WWX17, HQX18] that en-

forces the consistency between estimated 3D objects and 2D image, we devise a new way to

impose a re-projection consistency loss between 3D bounding boxes and perspective points.

Specifically, we compute the 2D projected perspective points Pproj by projecting the 3D

61



Figure 2.18: Qualitative results (top 50%). For every three columns as a group: (Left) The
RGB image with 2D detection results. (Middle) The RGB image with estimated perspective
points. (Right) The results in 3D point cloud; point cloud is used for visualization only.

bounding box corners back to 2D image plane and computing the distance with respect

to ground-truth perspective points Lproj “ MSEpPproj, Pgtq. Comparing with prior work

to maintain the consistency between 2D and 3D bounding boxes by approximating the 2D

projection of 3D bounding boxes [MAF17, HQX18], the proposed method uses the exact pro-

jection of projected 3D boxes to establish the consistency, capturing a more precise 2D-3D

relationship.

2.3.4 Implementation Details

Network Backbone Inspired by [HGD17], we use the combination of residual network

(ResNet) [HZR16] and feature pyramid network (FPN) [LDG17] to extract the feature from
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Figure 2.19: Precision-Recall (PR) curves for 3D object detection on SUN RGB-D

the entire image. A region proposal network (RPN) [RHG15] is used to produce object

proposals (i.e., RoI). A RoIAlign [HGD17] module is adopted to extract a smaller features

map (256ˆ 7ˆ 7) for each proposal.

Network Head The network head consists of three branches, and each branch has its

individual feature extractor and predictor. Three feature extractors have the same architec-

ture of two fully connected (FC) layers; each FC layer is followed by a ReLU function. The

feature extractors take the 256 ˆ 7 ˆ 7 dimensional RoI features as the input and output a

1024 dimensional vector.

The predictor in the 2D branch has two separate FC layers to predict a C dimensional

object class probabilities and a C ˆ 4 dimensional 2D bounding box offset. The predictor

in the perspective point branch predicts C ˆK ˆ 2 ˆ 9 dimensional templates and C ˆK

dimensional coefficients with two FC layers and their corresponding nonlinear activation

functions (i.e., sigmoid, softmax). The soft gate in the 3D branch consists of an FC layer

(1024-1) and a sigmoid function to generate the weight for feature aggregation. The predictor

in the 3D branch consists of three FC layers to predict the size, the distance from the camera,

and the orientation of the 3D bounding box.
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2.3.5 Experiments

Dataset We conduct comprehensive experiments on SUN RGB-D [SLX15] dataset. The

SUN RGB-D dataset has a total of 10,335 images, in which 5,050 are test images. It has

a rich annotation of scene categories, camera pose, and 3D bounding boxes. We evaluate

the 3D object detection results of the proposed PerspectiveNet, make comparisons with the

state-of-the-art methods, and further examine the contribution of each module in ablative

experiments.

Experimental Setup To prepare valid data for training the proposed model, we

discard the images with no 3D objects or incorrect correspondence between 2D and 3D

bounding boxes, resulting 4783 training images and 4220 test images. We detect 30 categories

of objects following [HQX18].

Reproduciblity Details During training, an RoI is considered positive if it has the

IoU with a ground-truth box of at least 0.5. Lpp, Lp, L3D, and Lproj are only defined on

positive RoIs. Each image has N sampled RoIs, where the ratio of positive to negative is 1:3

following the protocol presented in [Gir15].

We resize the images so that the shorter edges are all 800 pixels. To avoid over-fitting,

a data augmentation procedure is performed by randomly flipping the images or randomly

shifting the 2D bounding boxes with corresponding labels during the training. We use SGD

for optimization with a batch size of 32 on a desktop with 4 Nvidia TITAN RTX cards (8

images each card). The learning rate starts at 0.01 and decays by 0.1 at 30,000 and 35,000

iterations. We implement our framework based on the code of [MG18]. It takes 6 hours to

train, and the trained PerspectiveNet provides inference in real-time (20 FPS) using a single

GPU.

Since the consistency loss and perspective loss can be substantial during the early stage

of the training process, we add them to the joint loss when the learning rate decays twice.

The hyper-parameter (e.g., the weights of losses, the architecture of network head) is tuned

empirically by a local search.

Evaluation Metric We evaluate the performance of 3D object detection using the
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metric presented in [SLX15]. Specifically, we first calculate the 3D Intersection over Union

(IoU) between the predicted 3D bounding boxes and the ground-truth 3D bounding boxes,

and then compute the mean average precision (mAP). Following [HQX18], we set the 3D

IoU threshold as 0.15 in the absence of depth information.

Qualitative Results The qualitative results of 2D object detection, 2D perspective

point estimation, and 3D object detection are shown in Figure 2.18. Note that the proposed

method performs accurate 3D object detection in some challenging scenes. For the perspec-

tive point estimation, even though some of the perspective points are not aligned with image

features, the proposed method can still localize their positions robustly.

Quantitative Results Since the state-of-the-art method [HQX18] learns the cam-

era extrinsic parameters jointly, we provide two protocals for evaluations for a fair com-

parison: (i) PerspectiveNet given ground-truth camera extrinsic parameter (full), and (ii)

PerspectiveNet without ground-truth camera extrinsic parameter by learning it jointly fol-

lowing [HQX18] (w/o. cam).

We learn the detector for 30 object categories and report the precision-recall (PR) curve

of 10 main categories in Figure 2.19. We calculate the area under the curve to compute AP;

Table 2.9 shows the comparisons of APs of the proposed models with existing approaches.

Note that the critical difference between the proposed model and the state-of-the-art

method [HQX18] is the intermediate representation to learn the 2D-3D consistency. [HQX18]

uses 2D bounding boxes to enforce a 2D-3D consistency by minimizing the differences be-

tween projected 3D boxes and detected 2D boxes. In contrast, the proposed intermediate

representation has a clear advantage since projected 3D boxes often are not 2D rectangles,

and perspective points eliminate such errors.

Quantitatively, our full model improves the mAP of the state-of-the-art method [HQX18]

by 14.71%, and the model without the camera extrinsic parameter improves by 10.91%. The

significant improvement of the mAP demonstrates the efficacy of the proposed intermediate

representation. We defer more analysis on how each component contributes to the overall

performance in Section 2.3.5.1.
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Figure 2.20: Heatmaps vs. templates for perspective point prediction. (Left) Estimated by
heatmap-based method. (Right) Estimated by the proposed template-based method.

2.3.5.1 Ablative Analysis

In this section, we analyze each major component of the model to examine its contribution to

the overall significant performance gain. Specifically, we design six variants of the proposed

model.

‚ S1: The model trained without the perspective point branch, using the 2D offset to predict

the 3D center of the object following [HQX18].

‚ S2: The model that aggregates the feature from the perspective point branch and 3D

branch directly without the gate function.

‚ S3: The model that aggregates the feature from the perspective point branch and 3D

branch with a gate function that only outputs 0 or 1 (hard gate).

‚ S4: The model trained without the perspective loss.

‚ S5: The model trained without the consistency loss.

‚ S6: The model trained without the perspective branch, perspective loss, or consistency

loss.

Table 2.10 shows the mAP for each variant of the proposed model. The mAP drops 3.86%

without the perspective point branch (S1), 1.66% without the consistency loss (S5), indi-

cating that the perspective point and re-projection consistency influence the most to the

Table 2.9: Comparisons of 3D object detection on SUN RGB-D (AP).

bed chair sofa table desk toilet bin sink shelf lamp mAP
3DGP [CCP13] 5.62 2.31 3.24 1.23 - - - - - - -
HoPR [HQZ18] 58.29 13.56 28.37 12.12 4.79 16.50 0.63 2.18 1.29 2.41 14.01
CooP [HQX18] 63.58 17.12 41.22 26.21 9.55 58.55 10.19 5.34 3.01 1.75 23.65
Ours (w/o. cam) 71.39 34.94 55.63 34.10 14.23 73.73 17.47 34.41 4.21 9.54 34.96
Ours (full) 79.69 40.42 62.35 44.12 20.19 81.22 22.42 41.35 8.29 13.14 39.09
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proposed framework. In addition, the switch of gate function (S2, S3) and perspective loss

(S4) contribute less to the final performance. Since S6 is still higher than the state-of-the-art

result [HQX18] with 9.32%, we conjecture this performance gain may come from the one-

stage (vs. two-stage) end-to-end training framework and the usage of ground-truth camera

parameter; we will further investigate this in future work.

2.3.5.2 Heatmaps vs. Templates

As discussed in Section 2.3.3.2, we test two different methods for the perspective point esti-

mation: (i) dense prediction as heatmaps following the human pose estimation mechanism

in [HGD17] by adding a parallel heatmap prediction branch, and (ii) template-based re-

gression by the proposed method. The qualitative results (see Figure 2.20) show that the

heatmap-based estimation suffers severely from occlusion and topology change among the

perspective points, whereas the proposed template-based regression eases the problem signif-

icantly by learning robust sparse templates, capturing consistent topological relations. We

also evaluate the quantitative results by computing the average absolute distance between

the ground-truth and estimated perspective points. The heatmap-based method has a 10.25

pix error, while the proposed method only has a 6.37 pix error, which further demonstrates

the efficacy of the proposed template-based perspective point estimation.

2.3.5.3 Failure Cases

In a large portion of the failure cases, the perspective point estimation and the 3D box

estimation fail at the same time; see Figure 2.21. It implies that the perspective point esti-

mation and the 3D box estimation are highly coupled, which supports the assumptions that

the perspective points encode richer 3D information, and the 3D branch learns meaningful

Table 2.10: Ablative analysis of the proposed model on SUN RGB-D. We evaluate the mAP
for 3D object detection.

Setting S1 S2 S3 S4 S5 S6 Full
mAP 35.23 38.63 38.87 39.01 37.43 32.97 39.09
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Figure 2.21: Some failure cases. The perspective point estimation and the 3D box estimation
fail at the same time.

knowledge from the 2D branch. In future work, we may need a more sophisticated and

general 3D prior to infer the 3D locations of objects for such challenging cases.

2.3.5.4 Discussions and Future Work

Comparison with optimization-based methods. Assume the estimated 3D size or

distance is given, it is possible to compute the 3D bounding box with an optimization-based

method like efficient PnP. However, the optimization-based methods are sensitive to the

accuracy of the given known variables. It is more suitable for tasks with smaller solution

spaces (e.g., 6-DoF pose estimation where the 3D shapes of objects are fixed). However,

it would be difficult for tasks with larger solution spaces (e.g., 3D object detection where

the 3D size, distance, and object pose could vary significantly). Therefore, we argue that

directly estimating each variable with constraints imposed among them is a more natural

and more straightforward solution.

Potential incorporation with depth information. The PerspectiveNet estimates the

distance between the 3D object center and camera center based on the color image only

(pure RGB without any depth information). If the depth information was also provided, the

proposed method should be able to make a much more accurate distance prediction.
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Potential application to outdoor environment. It would be interesting to see how the

proposed method would perform on outdoor 3D object detection datasets like KITTI [GLS13].

The differences between the indoor and outdoor datasets for the task of 3D object detection

lie in various aspects, including the diversity of object categories, the variety of object di-

mension, the severeness of the occlusion, the range of the camera angles, and the range of the

distance (depth). We hope to adopt the PerspectiveNet in future to the outdoor scenarios.

2.3.6 Conclusion

We propose the PerspectiveNet, an end-to-end differentiable framework for 3D object detec-

tion from a single RGB image. It uses perspective points as an intermediate representation

between 2D input and 3D estimations. The PerspectiveNet adopts an R-CNN structure,

where the region-wise branches predict 2D boxes, perspective points, and 3D boxes. In-

stead of using a direct regression of 2D-3D relations, we further propose a template-based

regression for estimating the perspective points, which enforces a better consistency between

the predicted 3D boxes and the 2D image input. The experiments show that the proposed

method significantly improves existing RGB-based methods.
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CHAPTER 3

Human-centric 3D Scene Synthesis with Stochastic

Grammar

In this chapter, we present a human-centric method to sample and synthesize 3D room

layouts and 2D images thereof, to obtain large-scale 2D/3D image data with the perfect per-

pixel ground truth. An attributed spatial And-Or graph (S-AOG) is proposed to represent

indoor scenes. The S-AOG is a probabilistic grammar model, in which the terminal nodes

are object entities including room, furniture, and supported objects. Human contexts as

contextual relations are encoded by Markov Random Fields (MRF) on the terminal nodes.

We learn the distributions from an indoor scene dataset and sample new layouts using Monte

Carlo Markov Chain. Experiments demonstrate that the proposed method can robustly

sample a large variety of realistic room layouts based on three criteria: (i) visual realism

comparing to a state-of-the-art room arrangement method, (ii) accuracy of the affordance

maps with respect to ground-truth, and (ii) the functionality and naturalness of synthesized

rooms evaluated by human subjects.

3.1 Introduction

Traditional methods of 2D/3D image data collection and ground-truth labeling have evident

limitations. i) High-quality ground truths are hard to obtain, as depth and surface normal

obtained from sensors are always noisy. ii) It is impossible to label certain ground truth

information, e.g., 3D objects sizes in 2D images. iii) Manual labeling of massive ground-truth

is tedious and error-prone even if possible. To provide training data for modern machine

learning algorithms, an approach to generate large-scale, high-quality data with the perfect
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Figure 3.1: An example of synthesized indoor scene (bedroom) with affordance heatmap.
The joint sampling of a scene is achieved by alternative sampling of humans and objects
according to the joint probability distribution.

per-pixel ground truth is in need.

In this work, we propose an algorithm to automatically generate a large-scale 3D indoor

scene dataset, from which we can render 2D images with pixel-wise ground-truth of the

surface normal, depth, and segmentation, etc.. The proposed algorithm is useful for tasks

including but not limited to: i) learning and inference for various computer vision tasks; ii)

3D content generation for 3D modeling and games; iii) 3D reconstruction and robot map-

pings problems; iv) benchmarking of both low-level and high-level task-planning problems

in robotics.

Synthesizing indoor scenes is a non-trivial task. It is often difficult to properly model

either the relations between furniture of a functional group, or the relations between the

supported objects and the supporting furniture. Specifically, we argue there are four major

difficulties. (i) In a functional group such as a dining set, the number of pieces may vary.

(ii) Even if we only consider pair-wise relations, there is already a quadratic number of

object-object relations. (iii) What makes it worse is that most object-object relations are

not obviously meaningful. For example, it is unnecessary to model the relation between a
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Figure 3.2: Scene grammar as an attributed S-AOG. A scene of different types is decomposed
into a room, furniture, and supported objects. Attributes of terminal nodes are internal
attributes (sizes), external attributes (positions and orientations), and a human position
that interacts with this entity. Furniture and object nodes are combined by an address
terminal node and a regular terminal node. A furniture node (e.g., a chair) is grouped with
another furniture node (e.g., a desk) pointed by its address terminal node. An object (e.g.,
a monitor) is supported by the furniture (e.g., a desk) it is pointing to. If the value of the
address node is null, the furniture is not grouped with any furniture, or the object is put
on the floor. Contextual relations are defined between the room and furniture, between a
supported object and supporting furniture, among different pieces of furniture, and among
functional groups.

pen and a monitor, even though they are both placed on a desk. (iv) Due to the previous

difficulties, an excessive number of constraints are generated. Many of the constraints contain

loops, making the final layout hard to sample and optimize.

To address these challenges, we propose a human-centric approach to model indoor scene

layout. It integrates human activities and functional grouping/supporting relations as illus-

trated in Figure 3.1. This method not only captures the human context but also simplifies

the scene structure. Specifically, we use a probabilistic grammar model for images and

scenes [ZM07] – an attributed spatial And-Or graph (S-AOG), including vertical hierarchy

and horizontal contextual relations. The contextual relations encode functional grouping

relations and supporting relations modeled by object affordances [Gib79]. For each object,

we learn the affordance distribution, i.e., an object-human relation, so that a human can be

sampled based on that object. Besides static object affordance, we also consider dynamic

human activities in a scene, constraining the layout by planning trajectories from one piece

of furniture to another.
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In Section 3.3, we define the grammar and its parse graph which represents an indoor

scene. We formulate the probability of a parse graph in Section 3.4. The learning algorithm

is described in Section 3.5. Finally, sampling an indoor scene is achieved by sampling a parse

tree (Section 3.6) from the S-AOG according to the prior probability distribution.

This work makes three major contributions. (i) We jointly model objects, affordances,

and activity planning for indoor scene configurations. (ii) We provide a general learning and

sampling framework for indoor scene modeling. (iii) We demonstrate the effectiveness of this

structured joint sampling by extensive comparative experiments.

3.2 Related Work

3D content generation is one of the largest communities in the game industry and we

refer readers to a recent survey [HMV13] and book [STN16]. In this work, we focus on

approaches related to our work using probabilistic inference. Yu [YYT11] and Handa [HPS16]

optimize the layout of rooms given a set of furniture using MCMC, while Talton [TLL11]

and Yeh [YYW12] consider an open world layout using RJMCMC. These 3D room re-

arrangement algorithms optimize room layouts based on constraints to generate new room

layouts using a given set of objects. In contrast, the proposed method is capable of adding or

deleting objects without fixing the number of objects. Some literature focused on fine-grained

room arrangement for specific problems, e.g., small objects arrangement using user-input

examples [FRS12] and procedural modeling of objects to encourage volumetric similarity

to a target shape [RMG15]. To achieve better realism, Merrell [MSL11] introduced an

interactive system providing suggestions following interior design guidelines. Jiang [JKS16]

uses a mixture of conditional random field (CRF) to model the hidden human context and

arrange new small objects based on existing furniture in a room. However, it cannot direct

sampling/synthesizing an indoor scene, since the CRF is intrinsically a discriminative model

for structured classification instead of generation.

Synthetic data has been attracting an increasing interest to augment or even serve as

training data for object detection and correspondence [DMH17, MHL17, QSN16, SX14,
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SS14, ZSY17b, ZKA16], single-view reconstruction [HWK15], pose estimation [CWL16,

SVD03, SQL15, YIK16], depth prediction [SHM14], semantic segmentation [RVR16], scene

understanding [HPB16, HPS16, ZBK17], autonomous pedestrians and crowd [OPO10, QZ18,

ST05], VQA [JHM17b], training autonomous vehicles [CSK15, DRC17, SDL17], human util-

ity learning [YQK17, ZJZ16] and benchmarks [HWM14, QY16].

Stochastic grammar model has been used for parsing the hierarchical structures from

images of indoor [LZZ14, ZZ13] and outdoor scenes [LZZ14], and images/videos involving

humans [QHW17, WXS18]. In this work, instead of using stochastic grammar for parsing,

we forward sample from a grammar model to generate large variations of indoor scenes.

3.3 Representation of Indoor Scenes

We use an attributed S-AOG [ZM07] to represent an indoor scene. An attributed S-AOG

is a probabilistic grammar model with attributes on the terminal nodes. It combines i)

a probabilistic context free grammar (PCFG), and ii) contextual relations defined on an

Markov Random Field (MRF), i.e., the horizontal links among the nodes. The PCFG

represents the hierarchical decomposition from scenes (top level) to objects (bottom level)

by a set of terminal and non-terminal nodes, whereas contextual relations encode the spatial

and functional relations through horizontal links. The structure of S-AOG is shown in

Figure 3.2.

Formally, an S-AOG is defined as a 5-tuple: G “ xS, V,R, P,Ey, where we use notations

S the root node of the scene grammar, V the vertex set, R the production rules, P the prob-

ability model defined on the attributed S-AOG, and E the contextual relations represented

as horizontal links between nodes in the same layer. 1

Vertex Set V can be decomposed into a finite set of non-terminal and terminal nodes:

V “ VNT Y VT .

1We use the term “vertices” instead of “symbols” (in the traditional definition of PCFG) to be consistent
with the notations in graphical models.
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‚ VNT “ V And Y V Or Y V Set. The non-terminal nodes consists of three subsets. i) A

set of And-nodes V And, in which each node represents a decomposition of a larger

entity (e.g., a bedroom) into smaller components (e.g., walls, furniture and supported

objects). ii) A set of Or-nodes V Or, in which each node branches to alternative

decompositions (e.g., an indoor scene can be a bedroom or a living room), enabling

the algorithm to reconfigure a scene. iii) A set of Set nodes V Set, in which each

node represents a nested And-Or relation: a set of Or-nodes serving as child branches

are grouped by an And-node, and each child branch may include different numbers of

objects.

‚ VT “ V r
T YV

a
T . The terminal nodes consists of two subsets of nodes: regular nodes and

address nodes. i) A regular terminal node v P V r
T represents a spatial entity in a

scene (e.g., an office chair in a bedroom) with attributes. In this work, the attributes

include internal attributes Aint of object sizes pw, l, hq, external attributes Aext of

object position px, y, zq and orientation (x´ y plane) θ, and sampled human positions

Ah. ii) To avoid excessively dense graphs, an address terminal node v P V a
T is

introduced to encode interactions that only occur in a certain context but are absent

in all others [Fri03]. It is a pointer to regular terminal nodes, taking values in the set

V r
T Y tnilu, representing supporting or grouping relations as shown in Figure 3.2.

Contextual Relations E among nodes are represented by the horizontal links in S-

AOG forming MRFs on the terminal nodes. To encode the contextual relations, we define

different types of potential functions for different cliques. The contextual relations E “

Ef YEoYEgYEr are divided into four subsets: i) relations among furniture Ef ; ii) relations

between supported objects and their supporting objects Eo (e.g., a monitor on a desk);

iii) relations between objects of a functional pair Eg (e.g., a chair and a desk); and iv)

relations between furniture and the room Er. Accordingly, the cliques formed in the terminal

layer could also be divided into four subsets: C “ Cf Y Co Y Cg Y Cr. Instead of directly

capturing the object-object relations, we compute the potentials using affordances as a bridge

to characterize the object-human-object relations.
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Figure 3.3: (a) A simplified example of a parse graph of a bedroom. The terminal nodes of
the parse graph form an MRF in the terminal layer. Cliques are formed by the contextual
relations projected to the terminal layer. Examples of the four types of cliques are shown in
(b)-(e), representing four different types of contextual relations.

A hierarchical parse tree pt is an instantiation of the S-AOG by selecting a child node for

the Or-nodes as well as determining the state of each child node for the Set-nodes. A parse

graph pg consists of a parse tree pt and a number of contextual relations E on the parse

tree: pg “ ppt, Eptq. Figure 3.3 illustrates a simple example of a parse graph and four types

of cliques formed in the terminal layer.
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3.4 Probabilistic Formulation of S-AOG

A scene configuration is represented by a parse graph pg, including objects in the scene and

associated attributes. The prior probability of pg generated by an S-AOG parameterized by

Θ is formulated as a Gibbs distribution:

pppg|Θq “
1

Z
expt´Eppg|Θqu (3.1)

“
1

Z
expt´Eppt|Θq ´ EpEpt|Θqu, (3.2)

where Eppg|Θq is the energy function of a parse graph, Eppt|Θq is the energy function of a

parse tree, and EpEpt|Θq is the energy term of the contextual relations.

Eppt|Θq can be further decomposed into the energy functions of different types of non-

terminal nodes, and the energy functions of internal attributes of both regular and address

terminal nodes:

Eppt|Θq “
ÿ

vPV Or

EOrΘ pvq `
ÿ

vPV Set

ESetΘ pvq

l jh n

non-terminal nodes

`
ÿ

vPV rT

EAinΘ pvq

l jh n

terminal nodes

, (3.3)

where the choice of the child node of an Or-node v P V Or and the child branch of a Set-node

v P V Set follow different multinomial distributions. Since the And-nodes are deterministically

expanded, we do not have an energy term for the And-nodes here. The internal attributes

Ain (size) of terminal nodes follows a non-parametric probability distribution learned by

kernel density estimation.

EpEpt|Θq combines the potentials of the four types of cliques formed in the terminal layer,

integrating human attributes and external attributes of regular terminal nodes:

ppEpt|Θq “
1

Z
expt´EpEpt|Θqu (3.4)

“
ź

cPCf

φf pcq
ź

cPCo

φopcq
ź

cPCg

φgpcq
ź

cPCr

φrpcq. (3.5)
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Human Centric Potential Functions:

‚ Potential function φf pcq is defined on relations between furniture (Figure 3.3(b)). The

clique c “ tfiu P Cf includes all the terminal nodes representing furniture:

φf pcq “
1

Z
expt´λf ¨ x

ÿ

fi‰fj

lcolpfi, fjq, lentpcqyu, (3.6)

where λf is a weight vector, ă ¨, ¨ ą denotes a vector, and the cost function lcolpfi, fjq is

the overlapping volume of the two pieces of furniture, serving as the penalty of collision.

The cost function lentpcq “ ´HpΓq “ Σippγiq log ppγiq yields better utility of the room

space by sampling human trajectories, where Γ is the set of planned trajectories in the

room, and HpΓq is the entropy. The trajectory probability map is first obtained by

planning a trajectory γi from the center of every piece of furniture to another one using

bi-directional rapidly-exploring random tree (RRT) [LaV98], which forms a heatmap.

The entropy is computed from the heatmap as shown in Figure 3.4.

‚ Potential function φopcq is defined on relations between a supported object and the

supporting furniture (Figure 3.3(c)). A clique c “ tf, a, ou P Co includes a supported

object terminal node o, the address node a connected to the object, and the furniture

terminal node f pointed by a:

φopcq “
1

Z
expt´λo ¨ xlhumpf, oq, laddpaqyu, (3.7)

where the cost function lhumpf, oq defines the human usability cost—a favorable human

position should enable an agent to access or use both the furniture and the object. To

compute the usability cost, human positions hoi are first sampled based on position,

orientation, and the affordance map of the supported object. Given a piece of furniture,
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(a) Planned trajectories (b) Probability map

Figure 3.4: Given a scene configuration, we use bi-directional RRT to plan from every piece
of furniture to another, generating a human activity probability map.

the probability of the human positions is then computed by:

lhumpf, oq “ max
i
pphoi |fq. (3.8)

The cost function laddpaq is the negative log probability of an address node v P V a
T ,

treated as a certain regular terminal node, following a multinomial distribution.

‚ Potential function φgpcq is defined on functional grouping relations between furniture

(Figure 3.3(d)). A clique c “ tfi, a, fju P Cg consists of terminal nodes of a core

functional furniture fi, pointed by the address node a of an associated furniture fj.

The grouping relation potential is defined similarly to the supporting relation potential

φgpcq “
1

Z
expt´λc ¨ xlhumpfi, fjq, laddpaqyu. (3.9)

Other Potential Functions:

‚ Potential function φrpcq is defined on relations between the room and furniture (Fig-

ure 3.3(e)). A clique c “ tf, ru P Cr includes a terminal node f and r representing a
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piece of furniture and a room, respectively. The potential is defined as

φrpcq “
1

Z
expt´λr ¨ xldispf, rq, loripf, rqyu, (3.10)

where the distance cost function is defined as ldispf, rq “ ´ log ppd|Θq, in which d „

lnN pµ, σ2q is the distance between the furniture and the nearest wall modeled by a log

normal distribution. The orientation cost function is defined as loripf, rq “ ´ log ppθ|Θq,

where θ „ ppµ, κq “ eκ cospx´µq

2πI0pκq
is the relative orientation between the model and the

nearest wall modeled by a von Mises distribution.

3.5 Learning S-AOG

We use the SUNCG dataset [SYZ17b] as training data. It contains over 45K different scenes

with manually created realistic room and furniture layouts. We collect the statistics of

room types, room sizes, furniture occurrences, furniture sizes, relative distances, orientations

between furniture and walls, furniture affordance, grouping occurrences, and supporting

relations. The parameters Θ of the probability model P can be learned in a supervised way

by maximum likelihood estimation (MLE).

Weights of Loss Functions: Recall that the probability distribution of cliques formed

in the terminal layer is

ppEpt |Θq “
1

Z
expt´EpEpt |Θqu (3.11)

“
1

Z
expt´xλ, lpEptqyu, (3.12)

where λ is the weight vector and lpEptq is the loss vector given by four different types of

potential functions.

To learn the weight vector, the standard MLE maximizes the average log-likelihood:

LpEpt |Θq “ ´
1

N

N
ÿ

n“1

xλ, lpEptn qy ´ logZ. (3.13)
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This is usually maximized by following the gradient:

BLpEpt |Θq

Bλ
“ ´

1

N

N
ÿ

n“1

lpEptn q ´
B logZ

Bλ
(3.14)

“ ´
1

N

N
ÿ

n“1

lpEptn q ´
B log

ř

pt expt´xλ, lpEptqyu

Bλ
(3.15)

“ ´
1

N

N
ÿ

n“1

lpEptn q `
ÿ

pt

1

Z
expt´xλ, lpEptqyulpEptq (3.16)

“ ´
1

N

N
ÿ

n“1

lpEptn q `
1

rN

rN
ÿ

rn“1

lpEptrn q, (3.17)

where tEptrnu
rn“1,¨¨¨ , rN is the set of synthesized examples from the current model.

It is usually computationally infeasible to sample a Markov chain that burns into an

equilibrium distribution at every iteration of gradient ascent. Hence, instead of waiting for

the Markov chain to converge, we adopt the contrastive divergence (CD) learning that follows

the gradient of difference of two divergences [Hin02]

CD
rN “ KLpp0||p8q ´KLpp

rn||p8q, (3.18)

where KLpp0||p8q is the Kullback-Leibler divergence between the data distribution p0 and

the model distribution p8, and p
rn is the distribution obtained by a Markov chain started at

the data distribution and run for a small number rn of steps. In this work, we set rn “ 1.

Contrastive divergence learning has been applied effectively to addressing various prob-

lems; one of the most notable work is in the context of Restricted Boltzmann Machines [HS06].

Both theoretical and empirical evidences shows its efficiency while keeping bias typically very
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small [CH05]. The gradient of the contrastive divergence is given by

BCD
rN

Bλ
“

1

N

N
ÿ

n“1

lpEptn q ´
1

rN

rN
ÿ

rn“1

lpEptrn q (3.19)

´
Bp

rn

Bλ

BKLpp
rn||p8q

Bp
rn

.

Extensive simulations [Hin02] showed that the third term can be safely ignored since it is

small and seldom opposes the resultant of the other two terms.

Finally, the weight vector is learned by gradient descent computed by generating a small

number rN of examples from the Markov chain

λt`1 “ λt ´ ηt
BCD

rN

Bλ
(3.20)

“ λt ` ηt

¨

˝

1

rN

rN
ÿ

rn“1

lpEptrn q ´
1

N

N
ÿ

n“1

lpEptn q

˛

‚. (3.21)

Branching Probabilities: The MLE of the branch probabilities ρi of Or-nodes, Set-

nodes and address terminal nodes is simply the frequency of each alternative choice [ZM07]:

ρi “ #pv Ñ uiq{
npvq
ř

j“1

#pv Ñ ujq.

Grouping Relations: The grouping relations are hand-defined (i.e., nightstands are

associated with beds, chairs are associated with desks and tables). The probability of occur-

rence is learned as a multinomial distribution, and the supporting relations are automatically

extracted from SUNCG.

Room Size and Object Sizes: The distribution of the room size and object size

among all the furniture and supported objects is learned as a non-parametric distribution.

We first extract the size information from the 3D models inside SUNCG dataset, and then

fit a non-parametric distribution using kernel density estimation. The distances and relative

orientations of the furniture and objects to the nearest wall are computed and fitted into a

log normal and a mixture of von Mises distributions, respectively.
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(a) desk (b) coffee table (c) dining table (d) books (e) laptop (f) nightstand

(g) fruit bowl (h) vase (i) floor lamp (j) wall lamp (k) fireplace (l) ceiling fan

Figure 3.5: Examples of the learned affordance maps. Given the object positioned in the
center facing upwards, i.e., coordinate of p0, 0q facing direction p0, 1q, the maps show the
distributions of human positions. The affordance maps accurately capture the subtle differ-
ences among desks, coffee tables, and dining tables. Some objects are orientation sensitive,
e.g., books, laptops, and night stands, while some are orientation invariant, e.g., fruit bowls
and vases.

Figure 3.6: MCMC sampling process (from left to right) of scene configurations with simu-
lated annealing.

Affordances: We learn the affordance maps of all the furniture and supported objects

by computing the heatmap of possible human positions. These position include annotated

humans, and we assume that the center of chairs, sofas, and beds are positions that humans

often visit. By accumulating the relative positions, we get reasonable affordance maps as

non-parametric distributions as shown in Figure 3.5.

3.6 Synthesizing Scene Configurations

Synthesizing scene configurations is accomplished by sampling a parse graph pg from the prior

probability pppg|Θq defined by the S-AOG. The structure of a parse tree pt (i.e., the selection

of Or-nodes and child branches of Set-nodes) and the internal attributes (sizes) of objects
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can be easily sampled from the closed-form distributions or non-parametric distributions.

However, the external attributes (positions and orientations) of objects are constrained by

multiple potential functions, hence they are too complicated to be directly sampled from.

Here, we utilize a Markov chain Monte Carlo (MCMC) sampler to draw a typical state in

the distribution. The process of each sampling can be divided into two major steps:

1. Directly sample the structure of pt and internal attributes Ain: (i) sample the child

node for the Or-nodes; (ii) determine the state of each child branch of the Set-nodes;

and (iii) for each regular terminal node, sample the sizes and human positions from

learned distributions.

2. Use an MCMC scheme to sample the values of address nodes V a and external attributes

Aex by making proposal moves. A sample will be chosen after the Markov chain

converges.

We design two simple types of Markov chain dynamics which are used at random with

probabilities qi, i “ 1, 2 to make proposal moves:

‚ Dynamics q1: translation of objects. This dynamic chooses a regular terminal node,

and samples a new position based on the current position x: x Ñ x ` δx, where δx

follows a bivariate normal distribution.

‚ Dynamics q2: rotation of objects. This dynamic chooses a regular terminal node, and

samples a new orientation based on the current orientation of the object: θ Ñ θ ` δθ,

where δθ follows a normal distribution.

Adopting the Metropolis-Hastings algorithm, the proposed new parse graph pg1 is ac-

cepted according to the following acceptance probability:

αppg1|pg,Θq “ minp1,
pppg1|Θqpppg|pg1q

pppg|Θqpppg1|pgq
q (3.22)

“ minp1, exppEppg|Θq ´ Eppg1|Θqqq, (3.23)
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(a) bathroom (b) bedroom (c) dining room (d) garage (e) guest room

(f) gym (g) kitchen (h) living room (i) office (j) storage

Figure 3.7: Examples of scenes in ten different categories. Top: top-view. Middle: a side-
view. Bottom: affordance heatmap.

where the proposal probability rate is canceled since the proposal moves are symmetric in

probability. A simulated annealing scheme is adopted to obtain samples with high probability

as shown in Figure 3.6.

3.7 Experiments

We design three experiments based on different criteria: i) visual similarity to manually

constructed scenes, ii) the accuracy of affordance maps for the synthesized scenes, and iii)

functionalities and naturalness of the synthesized scenes. The first experiment compares our
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(a) SUNCG Perturbed
(b) Yu et al. [YYT11] (c) Ours

Figure 3.8: Top-view segmentation maps for classification.

method with a state-of-the-art room arrangement method; the second experiment measures

the synthesized affordances; the third one is an ablation study. Overall, the experiments

show that our algorithm can robustly sample a large variety of realistic scenes that exhibits

naturalness and functionality.

Layout Classification. To quantitatively evaluate the visual realism, we trained a classifier

on the top-view segmentation maps of synthesized scenes and SUNCG scenes. Specifically,

we train a ResNet-152 [HZR16] to classify top view layout segmentation maps (synthesized

vs. SUNCG). Examples of top-view segmentation maps are shown in Figure 3.8. The reason

to use segmentation maps is that we want to evaluate the room layout excluding rendering

factors such as object materials. We use two methods for comparison: i) a state-of-the-art

furniture arrangement optimization method proposed by Yu et al. [YYT11], and ii) slight

perturbation of SUNCG scenes by adding small Gaussian noise (e.g.µ “ 0, σ “ 0.1) to the

layout. The room arrangement algorithm proposed by [YYT11] takes one pre-fixed input

room and re-organizes the room. 1500 scenes are randomly selected for each method and

SUNCG: 800 for training, 200 for validation, and 500 for testing. As shown in Table 3.1,

the classifier successfully distinguishes Yu et al.vs. SUNCG with an accuracy of 87.49%.

Our method achieves a better performance of 76.18%, exhibiting a higher realism and larger

Table 3.1: Classification results on segmentation maps of synthesized scenes using different
methods vs. SUNCG.

Method Yu et al. [YYT11] SUNCG Perturbed Ours
Accuracy(%) Ó 87.49 63.69 76.18
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Table 3.2: Comparison between affordance maps computed from our samples and real data

Metric Bathroom Bedroom Dining Room Garage Guest Room Gym Kitchen Living Room Office Storage
Total variation 0.431 0.202 0.387 0.237 0.175 0.278 0.227 0.117 0.303 0.708
Hellinger distance 0.453 0.252 0.442 0.284 0.212 0.294 0.251 0.158 0.318 0.703

Table 3.3: Human subjects’ ratings (1-5) of the sampled layouts based on functionality (top)
and naturalness (bottom)

Method Bathroom Bedroom Dining Room Garage Guest Room Gym Kitchen Living Room Office Storage
no-context 1.12 ˘ 0.33 1.25 ˘ 0.43 1.38 ˘ 0.48 1.75 ˘ 0.66 1.50 ˘ 0.50 3.75 ˘ 0.97 2.38 ˘ 0.48 1.50 ˘ 0.87 1.62 ˘ 0.48 1.75 ˘ 0.43
object 3.12 ˘ 0.60 3.62 ˘ 1.22 2.50 ˘ 0.71 3.50 ˘ 0.71 2.25 ˘ 0.97 3.62 ˘ 0.70 3.62 ˘ 0.70 3.12 ˘ 0.78 1.62 ˘ 0.48 4.00 ˘ 0.71
Yu et al. [YYT11] 3.61 ˘ 0.52 4.15 ˘ 0.25 3.15 ˘ 0.40 3.59 ˘ 0.51 2.58 ˘ 0.31 2.03 ˘ 0.56 3.91 ˘ 0.98 4.62 ˘ 0.21 3.32 ˘ 0.81 2.58 ˘ 0.64
ours 4.58 ˘ 0.86 4.67 ˘ 0.90 3.33 ˘ 0.90 3.96 ˘ 0.79 3.25 ˘ 1.36 4.04 ˘ 0.79 4.21 ˘ 0.87 4.58 ˘ 0.86 3.67 ˘ 0.75 4.79 ˘ 0.58
no-context 1.00 ˘ 0.00 1.00 ˘ 0.00 1.12 ˘ 0.33 1.38 ˘ 0.70 1.12 ˘ 0.33 1.62 ˘ 0.86 1.00 ˘ 0.00 1.25 ˘ 0.43 1.12 ˘ 0.33 1.00 ˘ 0.00
object 2.88 ˘ 0.78 3.12 ˘ 1.17 2.38 ˘ 0.86 3.00 ˘ 0.71 2.50 ˘ 0.50 3.38 ˘ 0.86 3.25 ˘ 0.66 2.50 ˘ 0.50 1.25 ˘ 0.43 3.75 ˘ 0.66
Yu et al. [YYT11] 4.00 ˘ 0.52 3.85 ˘ 0.92 3.27 ˘ 1.01 2.99 ˘ 0.25 3.52 ˘ 0.93 2.14 ˘ 0.63 3.89 ˘ 0.90 3.31 ˘ 0.29 2.77 ˘ 0.67 2.96 ˘ 0.41
ours 4.21 ˘ 0.71 4.25 ˘ 0.66 3.08 ˘ 0.70 3.71 ˘ 0.68 3.83 ˘ 0.80 4.17 ˘ 0.75 4.38 ˘ 0.56 3.42 ˘ 0.70 3.25 ˘ 0.72 4.54 ˘ 0.71

Figure 3.9: Top: previous methods [YYT11] only re-arranges a given input scene with a
fixed room size and a predefined set of objects. Bottom: our method samples a large variety
of scenes.

variety. This result indicates our method is much more visually similar to real scenes than

the comparative scene optimization method. Qualitative comparisons of Yu et al.and our

method are shown in Figure 3.9.

Affordance Maps Comparison. We sample 500 rooms of 10 different scene categories

summarized in Table 3.2. For each type of room, we compute the affordance maps of the

objects in the synthesized samples, and calculate both the total variation distances and

Hellinger distances between the affordance maps computed from the synthesized samples
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and the SUNCG dataset. The two distributions are similar if the distance is close to 0.

Most sampled scenes using the proposed method show similar affordance distributions to

manually created ones from SUNCG. Some scene types (e.g.Storage) show a larger distance

since they do not exhibit clear affordances. Overall, the results indicate that affordance

maps computed from the synthesized scenes are reasonably close to the ones computed from

manually constructed scenes by artists.

Functionality and naturalness. Three methods are used for comparison: (i) direct sam-

pling of rooms according to the statistics of furniture occurrence without adding contextual

relation, (ii) an approach that only models object-wise relations by removing the human

constraints in our model, and (iii) the algorithm proposed by Yu et al. [YYT11]. We showed

the sampled layouts using three methods to 4 human subjects. Subjects were told the room

category in advance, and instructed to rate given scene layouts without knowing the method

used to generate the layouts. For each of the 10 room categories, 24 samples were ran-

domly selected using our method and [YYT11], and 8 samples were selected using both

the object-wise modeling method and the random generation. The subjects evaluated the

layouts based on two criteria: (i) functionality of the rooms, e.g., can the “bedroom” satisfies

a human’s needs for daily life; and (ii) the naturalness and realism of the layout. Scales of

responses range from 1 to 5, with 5 indicating perfect functionalilty or perfect naturalness

and realism. The mean ratings and the standard deviations are summarized in Table 3.3.

Our approach outperforms the three methods in both criteria, demonstrating the ability

to sample a functionally reasonable and realistic scene layout. More qualitative results are

shown in Figure 3.7.

Complexity of synthesis. The time complexity is hard to measure since MCMC sampling

is adopted. Empirically, it takes about 20-40 minutes to sample an interior layout (20000

iterations of MCMC), and roughly 12-20 minutes to render a 640ˆ480 image on a normal

PC. The rendering speed depends on settings related to illumination, environments, and the

size of the scene, etc..
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3.8 Conclusion

We propose a novel general framework for human-centric indoor scene synthesis by sampling

from a spatial And-Or graph. The experimental results demonstrate the effectiveness of our

approach over a large variety of scenes based on different criteria. In the future, to synthesize

physically plausible scenes, a physics engine should be integrated. We hope the synthesized

data can contribute to the broad AI community.
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Part II

Interaction: Human-like 3D

Interaction Understanding
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CHAPTER 4

Human-object Interaction and Affordance

In this chapter, we study the human-object interaction. Given a single image where humans

interact with the scene, the machine is expected to understand the human actions and utilize

the interaction between humans and objects to ease the ambiguities of single image parsing.

The interaction could serve as general commonsense knowledge for understanding the actions

and events, helping the generalization to various environments.

4.1 Joint Scene Parsing with 3D Human-object Interaction

In this section, we propose a new 3D holistic`` scene understanding problem, which jointly

tackles two tasks from a single-view image: (i) holistic scene parsing and reconstruction—3D

estimations of object bounding boxes, camera pose, and room layout, and (ii) 3D human

pose estimation. The intuition behind is to leverage the coupled nature of these two tasks

to improve the granularity and performance of scene understanding. We propose to exploit

two critical and essential connections between these two tasks: (i) human-object interac-

tion (HOI) to model the fine-grained relations between agents and objects in the scene, and

(ii) physical commonsense to model the physical plausibility of the reconstructed scene. The

optimal configuration of the 3D scene, represented by a parse graph, is inferred using Markov

chain Monte Carlo (MCMC), which efficiently traverses through the non-differentiable joint

solution space. Experimental results demonstrate that the proposed algorithm significantly

improves the performance of the two tasks on three datasets, showing an improved general-

ization ability.
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Figure 4.1: holistic`` scene understanding task requires to jointly recover a parse graph
that represents the scene, including human poses, objects, camera pose, and room layout,
all in 3D. Reasoning human-object interaction (HOI) helps reconstruct the detailed spa-
tial relations between humans and objects. Physical commonsense (e.g., physical property,
plausibility, and stability) further refines relations and improves predictions.

4.1.1 Introduction

Humans, even young infants, are adept at perceiving and understanding complex indoor

scenes. Such an incredible vision system not only relies on the data-driven pattern recognition

but also roots from the visual reasoning system, known as the core knowledge [SK07], that

facilitates the 3D holistic scene understanding tasks. Consider a typical indoor scene shown

in Figure 4.1 where a person sits in an office. We can effortlessly extract rich knowledge from

the static scene, including 3D room layout, 3D position of all the objects and agents, and

correct human-object interaction (HOI) relations in a physically plausible manner. In fact,

psychology studies have established that even infants employ at least two constraints—HOI

and physical commonsense—in perceiving occlusions [THK87, KS83], tracking small objects

even if contained by other objects [FC03], realizing object permanence [BSW85], recognizing
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rational HOI [Woo99, SCS13], understanding intuitive physics [GBK02a, Nee97, Bai04], and

using exploratory play to understand the environment [SF15]. All the evidence calls for

a treatment to integrate HOI and physical commonsense with a modern computer vision

system for scene understanding.

In contrast, few attempts have been made to achieve this goal. This challenge is difficult

partially due to the fact that the algorithm has to jointly accomplish both 3D holistic

scene understanding task and the 3D human pose estimation task in a physically plausible

fashion. Since this task is beyond the scope of holistic scene understanding in the literature,

we define this comprehensive task as holistic`` scene understanding—to simultaneously

estimate human pose, objects, room layout, and camera pose, all in 3D.

Based on one single-view image, existing work either focuses only on 3D holistic scene

understanding [HQZ18, ZLH17, BRG16, SYZ17a] or 3D human pose estimation [ZWM17,

RKS12, FXW18]. Although one can achieve an impressive performance in a single task

by training with an enormous amount of annotated data, we, however, argue that these

two tasks are intertwined tightly since the indoor scenes are invented and constructed by

human designs to support the daily activities, generating affordance for rich tasks and human

activities [Gib79].

To solve the proposed holistic`` scene understanding task, we attempt to address four

fundamental challenges:

1. How to utilize the coupled nature of human pose estimation and holistic scene un-

derstanding, and make them benefit each other? How to reconstruct the scene with

complex human activities and interactions?

2. How to constrain the solution space of the 3D estimations from a single 2D image?

3. How to make a physically plausible and stable estimation for complex scenes with

human agents and objects?

4. How to improve the generalization ability to achieve a more robust reconstruction

across different datasets?
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To address the first two challenges, we take a novel step to incorporate HOI as constraints

for joint parsing of both 3D human pose and 3D scene. The integration of HOI is inspired

by crucial observations of human 3D scene perception, which are challenging for existing

systems. Take Figure 4.1 as an example; humans are able to impose a constraint and infer

the relative position and orientation between the girl and chair by recognizing the girl is

sitting in the chair. Similarly, such a constraint can help to recover the small objects (e.g.,

recognizing keyboard by detecting the girl is using a computer in Figure 4.1). By learning

HOI priors and using the inferred HOI as visual cues to adjust the fine-grained spatial

relations between human and scene (objects and room layout), the geometric ambiguity (3D

estimation solution space) in the single-view reconstruction would be largely eased, and the

reconstruction performances of both tasks would be improved.

To address the third challenge, we incorporate physical commonsense into the pro-

posed method. Specifically, the proposed method reasons about the physical relations (e.g.,

support relation) and penalizes the physical violations to predict a physically plausible and

stable 3D scene. The HOI and physical commonsense serve as general prior knowledge

across different datasets, thus help address the fourth issue.

To jointly parse 3D human pose and 3D scene, we represent the configuration of an indoor

scene by a parse graph shown in Figure 4.1, which consists of a parse tree with hierarchical

structure and a MRF over the terminal nodes, capturing the rich contextual relations among

human, objects, and room layout. The optimal parse graph to reconstruct both the 3D scene

and human poses is achieved by a MAP estimation, where the prior characterizes the prior

distribution of the contextual HOI and physical relations among the nodes. The likelihood

measures the similarity between (i) the detection results directly from 2D object and pose

detector, and (ii) the 2D results projected from the 3D parsing results. The parse graph

can be iteratively optimized by sampling an MCMC with simulated annealing based on

posterior probability. The joint optimization relies less on a specific training dataset since it

benefits from the prior of HOI and physical commonsense which are almost invariant across

environments and datasets, and other knowledge learned from well-defined vision task (e.g.,

3D pose estimation, scene reconstruction), improving the generalization ability significantly
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across different datasets compared with purely data-driven methods.

Experimental results on PiGraphs [SCH16], Watch-n-Patch [WZS15], and SUN RGB-

D [SLX15] demonstrate that the proposed method outperforms state-of-the-art methods

for both 3D scene reconstruction and 3D pose estimation. Moreover, the ablative analysis

shows that the HOI prior improves the reconstruction, and the physical common sense helps

to make physically plausible predictions.

This work makes four major contributions:

1. We propose a new holistic`` scene understanding task with a computational framework

to jointly infer human poses, objects, room layout, and camera pose, all in 3D.

2. We integrate HOI to bridge the human pose estimation and the scene reconstruction,

reducing geometric ambiguities (solution space) of the single-view reconstruction.

3. We incorporate physical commonsense, which helps to predict physically plausible

scenes and improve the 3D localization of both humans and objects.

4. We demonstrate the joint inference improves the performance of each sub-module and

achieves better generalization ability across various indoor scene datasets compared

with purely data-driven methods.

4.1.2 Related Work

Single-view 3D Human Pose Estimation: Previous methods on 3D pose estimation

can be divided into two streams: (i) directly learning 3D pose from a 2D image [SRA12,

LC14], and (ii) cascaded frameworks that first perform 2D pose estimation and then recon-

struct 3D pose from the estimated 2D joints [ZWM17, MSS17, RKS12, WXL16, CLO16,

TRA17]. Although these researches have produced impressive results in scenarios with rel-

atively clean background, the problem of estimating the 3D pose in a typical indoor scene

with arbitrary cluttered objects has rarely been discussed. Recently, Zanfir et al. [ZMS18]

adopts constraints of ground plane support and volume occupancy by multiple people, but

the detailed relations between human and scene (objects and layout) are still missing. In
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contrast, the proposed model not only estimates the 3D poses of multiple people with an

absolute scale but also models the physical relations between humans and 3D scenes.

Single-view 3D Scene Reconstruction: Single-view 3D scene reconstruction has three

main approaches: (i) Predict room layouts by extracting geometric features to rank 3D

cuboids proposals [ZLH17, SYZ17a, ISS17b, ZCS18]. (ii) Align object proposals to RGB

or depth image by treating objects as geometric primitives or CAD models [BRG16, SX14,

ZLX14]. (iii) Joint estimation of the room layout and 3D objects with contexts [SYZ17a,

ZZ13, CCP13, ZSY17a, ZLH17]. A more recent work by Huang et al. [HQZ18] models the

hierarchical structure, latent human context, physical constraints, and jointly optimizes in

an analysis-by-synthesis fashion; although human context and functionality were taken into

account, indoor scene reconstruction with human poses and HOI remains untouched.

Human-Object Interaction: Reasoning fine-grained human interactions with objects

is essential for a more holistic indoor scene understanding as it provides crucial cues for

human activities and physical interactions. In robotics and computer vision, prior work

has exploited human-object relations in event, object, and scene modeling, but most work

focuses on human-object relation detection in images [CLL18, QWJ18a, ML16, KRK11],

probabilistic modeling from multiple data sources [WZZ13, SCH14, GKD09], and snapshots

generation or scene synthesis [SCH16, MLZ16, QZH18, JQZ18]. Different from all previous

work, we use the learned 3D HOI priors to refine the relative spatial relations between human

and scene, enabling a top-down prediction of interacted objects.

Physical Commonsense: The ability to infer hidden physical properties is a well-established

human cognitive ability [MWF83, KHL17]. By exploiting the underlying physical properties

of scenes and objects, recent efforts have demonstrated the capability of estimating both

current and future dynamics of static scenes [WYL15, MBR16] and objects [ZZC15], under-

standing the support relationships and stability of objects [ZZY13], volumetric and occlusion

reasoning [SHK12, ZZY15], inferring the hidden force [ZJZ16], and reconstructing the 3D
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scene [HQX18, DLB18] and 3D pose [ZMS18]. In addition to the physical properties and

support relations among objects adopted in previous methods, we further model the physical

relations (i) between human and objects, and (ii) between human and room layout, resulting

in a physically plausible and stable scene.

4.1.3 Representation

The configuration of an indoor scene is represented by a parse graph pg “ ppt, Eq; see

Figure 4.1. It combines a parse tree pt and contextual relations E among the leaf nodes.

Here, a parse tree pt “ pV,Rq includes the vertex set with a three-level hierarchical structure

V “ VrYVmYVt and the decomposing rules R, where the root node Vr represents the overall

scene, the middle node Vm has three types of nodes (objects, human, and room layout), and

the terminal nodes Vt contains child nodes of the middle nodes, representing the detected

instances of the parent node in this scene. E Ă Vt ˆ Vt is the set of contextual relations

among the terminal nodes, represented by horizontal links.

Terminal Nodes Vt in pg can be further decomposed as Vt “ Vlayout Y Vobject Y Vhuman.

Specifically:

‚ The room layout v P Vlayout is represented by a 3D bounding box XL P R3ˆ8 in the

world coordinate. The 3D bounding box is parametrized by the node’s attributes,

including its 3D size SL P R3, center CL P R3, and orientation RotpθLq P R3ˆ3.

‚ Each 3D object v P Vobject is represented by a 3D bounding box with its semantic label.

We use the same 3D bounding box parameterization as the one for the room layout.

‚ Each human v P Vhuman is represented by 17 3D joints XH P R3ˆ17 with their action

labels. These 3D joints are parametrized by the pose scale SH P R, pose center CH P R3

(i.e., hip), local joint position RelH P R3ˆ17, and pose orientation RotpθHq P R3ˆ3.

Each person is also attributed by a concurrent action label a, which is a multi-hot

vector representing the current actions of this person: one can “sit” and “drink”, or

“walk” and “make phone call” at the same time.
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Contextual Relations E contains three types of relations in the scene E “ tEs, Ec, Ehoiu.

Specifically:

‚ Es and Ec denote support relation and physical collision, respectively. These two rela-

tions penalize the physical violations among objects, between objects and layout, and

between human and layout, resulting in a physically plausible and stable prediction.

‚ Ehoi models HOI and provides strong and fine-grained constraints for holistic scene

understanding. For instance, if a person is detected as sitting on a chair, we can

constrain the relative 3D positions between this person and chair using a pre-learned

spatial relation of “sitting.”

4.1.4 Probabilistic Formulation

The parse graph pg is a comprehensive interpretation of the observed image I [ZM07]. The

goal of the holistic`` scene understanding is to infer the optimal parse graph pg˚ given I by

an MAP estimation:

pg˚ “ arg max
pg

pppg|Iq “ arg max
pg

pppgq ¨ ppI|pgq

“ arg max
pg

1

Z
expt´Ephyppgq ´ Ehoippgq ´ EpI|pgqu.

(4.1)

We model the joint distribution by a Gibbs distribution, where the prior probability of parse

graph can be decomposed into physical prior Ephyppgq and HOI prior Ehoippgq; balancing

factors are neglected for simplicity.

Physical Prior Ephyppgq represents physical commonsense in a 3D scene. We consider

two types of physical relations among the terminal nodes: support relation Es and collision

relation Ec. Therefore, the energy of physical prior is defined as Ephyppgq “ Esppgq ` Ecppgq.

Specifically:

• Support Relation Esppgq defines the energy between the supported object/human and the
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supporting object/layout:

Esppgq “
ÿ

pvi,vjqPEs

Eopvi, vjq ` Eheightpvi, vjq, (4.2)

where Eopvi, vjq “ 1 ´ areapvi X vjq{areapviq is the overlapping ratio in the xy-plane, and

Eheightpvi, vjq is the absolute height difference between the lower surface of the supported

object vi and the upper surface of the supporting object vj; Eopvi, vjq “ 0 when the supporting

object is the floor and Eheightpvi, vjq “ 0 when the supporting object is the wall.

• Physical Collision Ecppgq denotes the physical violations. We penalize the intersection

among human, objects, and room layout except the objects in HOI and objects that could

be a container. The potential function is defined as:

Ecppgq “
ÿ

Cpv, Vlayoutq

vPpVobjectYVhumanq

`
ÿ

Cpvi, vjq
viPVobject
vjPVhuman

pvi,vjqREhoi

`
ÿ

Cpvi, vjq
vi,vjPVobject
vi,vjRVcontainer

, (4.3)

where Cpq denotes the volume of intersection between entities. Vcontainer denotes the objects

that can be a container, such as a cabinet, desk, and drawer.

Human-object Interaction Prior Ehoippgq is defined by the interactions between hu-

man and objects:

Ehoippgq “
ÿ

pvi,vjqPEhoi

Kpvi, vj, avjq, (4.4)

where vi P Vobject, vj P Vhuman, and K is an HOI function that evaluates the interaction

between an object and a human given the action label a:

Kpvi, vj, avjq “ ´ log lpvi, vj|avjq, (4.5)

where lpvi, vj|avjq is the likelihood of the relative position between node vi and vj given

an action label a. We formulate the action detection as a multi-label classification; see

Section 4.1.5.3 for details. The likelihood lp¨q models the distance between key joints and

the center of the object; e.g., for “sitting,” it models the relative spatial relation between
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Figure 4.2: Examples of typical HOIs and examples from the SHADE dataset. The heatmap
indicates the probable locations of HOI.

the hip and the center of a chair. The likelihood can be learned from 3D HOI datasets with

a multivariate Gaussian distribution p∆x,∆y,∆zq „ N3pµ,Σq, where ∆x,∆y, and ∆z are

the relative distances in the directions of three axes.

Likelihood EpI|pgq characterizes the consistency between the observed 2D image and

the inferred 3D result. The projected 2D object bounding boxes and human poses can be

computed by projecting the inferred 3D objects and human poses onto a 2D image plane.

The likelihood is obtained by comparing the directly detected 2D bounding boxes and human

poses with projected ones from inferred 3D results:

EpI|pgq “
ÿ

vPVobject

¨DopBpvq, B
1
pvqq `

ÿ

vPVhuman

¨DhpPopvq, Po
1
pvqq, (4.6)

where Bpq and B1pq are the bounding boxes of detected and projected 2D objects, Popq and

Po1pq the poses of detected and projected 2D humans, Dop¨q the IoU between the detected

2D bounding box and the convex hull of the projected 3D bounding box, and Dhp¨q the

average pixel-wise Euclidean distance between two 2D poses.
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4.1.4.1 SHADE Dataset

We collect SHADE (Synthetic Human Activities with Dynamic Environment), a self-annotated

dataset that consists of dynamic 3D human skeletons and objects, to learn the prior model

for each HOI. It is collected from a video game Grand Theft Auto V with various daily

activities and HOIs. Currently, there are over 29 million frames of 3D human poses, where

772,229 frames are annotated. On average, each annotated frame is associated with 2.03

action labels and 0.89 HOIs. The SHADE dataset contains 19 fine-grained HOIs for both in-

door and outdoor activities. By selecting most frequent HOIs and merging similar HOIs, we

choose 6 final HOIs: read [phone, notebook, tablet], sit-at [human-table relation], sit [human-

chair relation], make-phone-call, hold, use-laptop. Figure 4.2 shows some typical examples

and relations in the dataset.

4.1.5 Joint Inference

Given a single RGB image as the input, the goal of joint inference is to find the optimal

parse graph that maximizes the posterior probability pppg|Iq. The joint parsing is a four-step

process: (i) 3D scene initialization of the camera pose, room layout, and 3D object bounding

boxes, (ii) 3D human pose initialization that estimates rough 3D human poses in a 3D scene,

(iii) concurrent action detection, and (iv) joint inference to optimize the objects, layout, and

human poses in 3D scenes by maximizing the posterior probability.

4.1.5.1 3D Scene Initialization

Following [HQX18], we initialize the 3D objects, room layout, and camera pose cooperatively,

where the room layout and objects are parametrized by 3D bounding boxes. For each object

vi P Vobject, we find its supporting object/layout by minimizing the supporting energy:

v˚j “ arg min
vj

Eopvi, vjq ` Eheightpvi, vjq ´ λs log psptpvi, vjq, (4.7)
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where vj P pVobject, Vlayoutq and psptpvi, vjq are the prior probabilities of the supporting relation

modeled by multinoulli distributions, and λs a balancing constant.

4.1.5.2 3D Human Pose Initialization

We take 2D poses as the input and predict 3D poses in a local 3D coordinate follow-

ing [TRA17], where the 2D poses are detected and estimated by [CSW17]. The local 3D

coordinate is centered at the human hip joint, and the z-axis is aligned with the up direction

of the world coordinate.

To transform this local 3D pose into the world coordinate, we find the 3D world coordinate

v3D P R3 of one visible 2D joint v2D P R2 (e.g., head) by solving a linear equation with

the camera intrinsic parameter K and estimated camera pose R. Per the pinhole camera

projection model, we have

α

»

–

v2D

1

fi

fl “ K ¨R ¨ v3D, (4.8)

where α is a scaling factor in the homogeneous coordinate. To make the function solvable,

we assume a pre-defined height h0 for the joint position v3D in the world coordinate. Lastly,

the 3D pose initialization is obtained by aligning the local 3D pose and the corresponding

joint position with v3D.

4.1.5.3 Concurrent Action Detection

We formulate the concurrent action detection as a multi-label classification problem to ease

the ambiguity in describing the action. We define a portion of the action labels (e.g., “eating”,

“making phone call”) as the HOI labels, and the remaining action labels (e.g., “standing”,

“bending”) as general human poses without HOI. The mixture of HOI actions and non-HOI

actions covers most of the daily human actions in indoor scenes. We manually map each of

the HOI action labels to a 3D HOI relation learned from the SHADE dataset, and use the

HOI actions as cues to improve the accuracy of 3D reconstruction by integrating it as prior

knowledge in our model. The concurrent action detector takes 2D skeletons as the input and
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Algorithm 2 Joint Inference Algorithm

Given: Image I, initialized parse graph pginit
procedure Phase 1

for Different temperatures do
Inference with physical commonsense Ephy but without HOI Ehoi: randomly select
from room layout, objects, and human poses to optimize pg

procedure Phase 2
Match each agent with their interacting objects

procedure Phase 3
for Different temperatures do

Inference with total energy E , including physical commonsense and HOI: randomly
select from layout, objects, and human poses to optimize pg

procedure Phase 4
Top-down sampling by HOIs

predicts multiple action labels with a three-layer multi-layer perceptron (MLP).

The dataset for training the concurrent action detectors consists of both synthetic data

and real-world data. It is collected from: (i) The synthetic dataset described in Sec-

tion 4.1.4.1. We project the 3D human poses of different HOIs into 2D poses with random

camera poses. (ii) The dataset proposed and collected by [JSL17], which also contains 3D

poses of multiple persons in social interactions. We project 3D poses into 2D following the

same method as in (i). (iii) The 2D poses in an action recognition dataset [YJK11]. Our

results show that the synthetic data can significantly expand the training set and help to

avoid overfitting in concurrent action detection.

4.1.5.4 Inference

Given an initialized parse graph, we use MCMC with simulated annealing to jointly optimize

the room layout, 3D objects, and 3D human poses through the non-differentiable energy

space; see Algorithm 2 as a summary. To improve the efficiency of the optimization process,

we adopt a scheduling strategy that divides the optimization process into following four

phases with different focuses: (i) Optimize objects, room layout, and human poses without

HOIs. (ii) Assign HOI labels to each agent in the scene, and search the interacting objects

of each agent. (iii) Optimize objects, room layout, and human poses jointly with HOIs. (iv)
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Figure 4.3: The optimization process of the scene configuration by simulated annealing
MCMC. Each step is the number of accepted proposal.

Generate possible miss-detected objects by top-down sampling.

Dynamics: In Phase (i) and (iii), we use distinct MCMC processes. To traverse non-

differentiable energy spaces, we design Markov chain dynamics qo1, q
o
2, q

o
3 for objects, ql1, q

l
2 for

room layout, and qh1 , q
h
2 , q

h
3 for human poses.

‚ Object Dynamics: Dynamics qo1 adjusts the position of an object, which translates the

object center in one of the three Cartesian coordinate axes or along the depth direction; the

depth direction starts from the camera position and points to the object center. Translation

along depth is effective with proper camera pose initialization. Dynamics qo2 proposes rotation

of the object with a specified angle. Dynamics qo3 changes the scale of the object by expanding

or shrinking corner positions of the cuboid with respect to the object center. Each dynamic

can diffuse in two directions: translate in the direction of ‘`x’ and ‘´x,’ or rotate in the

direction of clockwise and counterclockwise. To better traverse in energy space, the dynamics

may propose to move along the gradient descent direction with a probability of 0.95 or the

gradient ascent direction with a probability of 0.05.

‚ Human Dynamics: Dynamics qh1 proposes to translate 3D human joints along x, y, z,

or depth direction. Dynamics qh2 rotates the human pose with a certain angle. Dynamics

qh3 adjusts the scale of human poses by a scaling factor on the 3D joints with respect to the

pose center.

‚ Layout Dynamics: Dynamics ql1 translates the wall towards or away from the layout

center. Dynamics ql2 adjusts the floor height, equivalent to changing the camera height.
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Figure 4.4: Illustration of the top-down sampling process. The object detection module
misses the detection of the bottle held by the person, but our model can still recover the
bottle by reasoning HOI.

In each sampling iteration, the algorithm proposes a new pg1 from current pg under the

proposal probability of qppg Ñ pg1|Iq by applying one of the above dynamics. The generated

proposal is accepted with respect to an acceptance rate αp¨q as in the Metropolis-Hastings

algorithm [Has70]:

αppg Ñ pg1q “ minp1,
qppg1 Ñ pgq ¨ pppg1|Iq

qppg Ñ pg1q ¨ pppg|Iq
q, (4.9)

A simulated annealing scheme is adopted to obtain pg with a high probability.

Top-down sampling: By top-down sampling objects from HOIs relations, the proposed

method can recover the interacting 3D objects that are too small or novel to be detected by

the state-of-the-art 2D object detector. In Phase (iv), we propose to sample an interacting

object from the person if the confidence of HOI is higher than a threshold; we minimize

the HOI energy in Equation (4.4) to determine the category and location of the object; see

examples in Figure 4.4.

Implementation Details: In Phase (ii), we search the interacting objects for each

agent involved in HOI by minimizing the energy in Equation (4.4). In Phase (iii), after

matching each agent with their interacting objects, we can jointly optimize objects, room

layout, and human poses with the constraint imposed by HOI. Figure 4.3 shows examples

of the simulated annealing optimization process.
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4.1.6 Experiments

Since the proposed task is new and challenging, limited data and state-of-the-art methods

are available for the proposed problem. For fair evaluations and comparisons, we evaluate

the proposed algorithm on three types of datasets: (i) Real data with full annotation on

PiGraphs dataset [SCH16] with limited 3D scenes. (ii) Real data with partial annotation

on daily activity dataset Watch-n-Patch [WZS15], which only contains ground-truth depth

information and annotations of 3D human poses. (iii) Synthetic data with generated anno-

tations to serve as the ground truth: we sample 3D human poses of various activities in SUN

RGB-D dataset [SLX15] and project the sampled skeletons back onto the 2D image plane.

4.1.6.1 Comparative methods

To the best of our knowledge, no previous algorithm jointly optimizes the 3D scene and 3D

human pose from a single image. Therefore, we compare our model against state-of-the-art

methods for each task. Particularly, we compare with [HQX18] for single-image 3D scene

reconstruction and VNect [MSS17] for 3D pose estimation in the world coordinate.

Since VNect can only estimate a single person, we design an additional baseline for 3D

multi-person human pose estimation in the world coordinate. We first extract a 2048-D

image feature vector using the Global Geometry Network (GGN) [HQX18] to capture the

global geometry of the scene. The concatenated vector (GGN image feature, 2D pose, 3D

pose in the local coordinate, and the camera intrinsic matrix) is fed into a 5-layer fully

connected network to predict the 3D pose. The fully-connected layers are trained using the

mean squared error loss. We train the network on the training set of the synthetic SUN

RGB-D dataset.

4.1.6.2 Dataset

PiGraphs [SCH16] contains 30 scenes and 63 video recordings obtained by Kinect v2, de-

signed to associate human poses with object arrangements. There are 298 actions available in
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Figure 4.5: Augmenting SUN RGB-D with synthetic human poses.

approximately 2-hours of recordings. Each recording is about 2-minute long, with an average

4.9 action annotation. We removed the frames with no human appearance or annotations,

resulting in 36,551 test images.

Watch-n-Patch (WnP) [WZS15] is an activity video dataset recorded by Kinect v2. It

contains several human daily activities as compositions of multiple actions interacting with

various objects. The dataset comes with activity annotations, depth maps, and 3D human

poses. We test our algorithm on 1,210 randomly selected frames.

SUN RGB-D [SLX15] contains rich indoor scenes that are densely annotated with 3D

bounding boxes, room layouts, and camera poses. The original dataset has 5,050 testing

images, but we discarded images with no detected 2D objects, invalid 3D room layout an-

notation, limited space, or small field of view, resulting in 3,476 testing images.

Synthetic SUN RGB-D is augmented from SUN RGB-D dataset by sampling human

poses in the scenes. Following methods of sampling imaginary human poses in [HQZ18], we

extend the sampling to more generalized settings for various poses. The augmented human

is represented by a 6-tuple xa, µ, t, r, s, µ̂y, where a is the action type, µ the pose template,

t translation, r rotation, s scale, and µ̂ “ µ ¨ r ¨ s ` t the imagined human skeleton. For

each action label, we sample an imagined human pose inside a 3D scene: xt˚, r˚, s˚y “

arg min
t,r,s

Ephy`Ehoi. If a is involved with any HOI unit, we further augment the 3D bounding

box of the object. After sampling a human pose, we project the augmented 3D scenes

back onto the 2D image plane using the ground truth camera matrix and camera pose; see
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examples in Figure 4.5. For a fair comparison of 3D human pose estimation on synthetic

SUN RGB-D, all the algorithms are provided with the ground truth 2D skeletons as the

input.

For 3D scene reconstruction, both [HQX18] and the proposed 3D scene initialization are

learned using SUN RGB-D training data and tested on the above three datasets. For 3D

pose estimation, both [MSS17] and the initialization of the proposed method are trained on

public datasets, while the baseline is trained on synthetic SUN RGB-D. Note that we only

use the SHADE dataset for learning a dictionary of HOIs.

4.1.6.3 Quantitative and Qualitative Results

We evaluate the proposed model on holistic`` scene understanding task by comparing the

performances on both 3D scene reconstruction and 3D pose estimation.

Scene Reconstruction: We compute the 3D IoU and 2D IoU of object bounding boxes

to evaluate the 3D scene reconstruction and the consistency between the 3D world and 2D

image. Following the metrics described in [HQX18], we compute the 3D IoU between the

estimated 3D bounding boxes and the annotated 3D bounding boxes on PiGraphs and SUN

RGB-D. For dataset without ground-truth 3D bounding boxes (i.e., Watch-n-Patch), we

evaluate the distance between the camera center and the 3D object center. To evaluate

the 2D-3D consistency, the 2D IoU is computed between the projected 2D boxes of the 3D

object bounding boxes and the ground-truth 2D boxes or detected 2D boxes (i.e., Watch-n-

Patch). As shown in Table 4.1, the proposed method improves the state-of-the-art 3D scene

reconstruction results on all three datasets without specific training on each of them. More

importantly, it significantly improves the results on PiGraphs and Watch-n-Patch compared

with [HQX18]. The most likely reason is: [HQX18] is trained on SUN RGB-D dataset in

a purely data-driven fashion, therefore difficult to generalize across to other datasets (i.e.,

PiGraphs, and Watch-n-Patch). In contrast, the proposed model incorporates more general

prior knowledge of HOI and physical commonsense, and combines such knowledge with 2D-

3D consistency (likelihood) for joint inference, avoiding the over-fitting caused by the direct
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Table 4.1: Quantitative Results of 3D Scene Reconstruction

Methods Huang et al.[HQX18] Ours
Metric 2D IoU (%) 3D IoU (%) Depth (m) 2D IOU (%) 3D IoU (%) Depth (m)

PiGraphs 68.6 21.4 - 75.1 24.9 -
SUN RGB-D 63.9 17.7 - 72.9 18.2 -

WnP 67.3 - 0.375 73.6 - 0.162

Table 4.2: Quantitative Results of Global 3D Pose Estimation

Methods VNect[MSS17] Baseline Ours
Metrics 2D (pix) 3D (m) 2D (pix) 3D (m) 2D (pix) 3D (m)

PiGraphs 63.9 0.732 284.5 2.67 15.9 0.472
SUNRGBD - - 45.81 0.435 14.03 0.517

WnP 50.51 0.646 325.2 2.14 20.5 0.330

3D estimation from 2D. Figure 4.6 shows the qualitative results on all three datasets.

Pose Estimation: We evaluate the pose estimation in both 3D and 2D. For 3D evaluation,

we compute the Euclidean distance between the estimated 3D joints and the 3D ground-truth

and average it over all the joints. For 2D evaluation, we project the estimated 3D pose back

to the 2D image plane and compute the pixel distance against the ground truth. See Table 4.2

for quantitative results. The proposed method outperforms two other methods in both 2D

and 3D. On the synthetic SUN RGB-D dataset, all algorithms are given the ground truth

2D poses as the input for a fair comparison. Although the baseline model achieves better

performances since the baseline model fits well for the 3D human poses synthesized with

limited templates, the 3D poses estimated by VNect and baseline model deviate a lot from

the ground truth for datasets with real human poses (i.e., PiGraph, and Watch-n-Patch). In

contrast, the proposed algorithm performs consistently well, demonstrating an outstanding

generalization ability across various datasets.

Ablative Analysis: To analyze the contributions of HOI and physical commonsense, we

compare two variants of the proposed full model: (i) model w/o HOI: without HOI Ehoippgq,

and (ii) model w/o phy.: without physical commonsense Ephyppgq.

• Human-Object Interaction. We compare our full model with model w/o hoi to evaluate

the effects of each category of HOI. Evaluation metrics include 3D pose estimation error,
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Table 4.3: Ablative results of HOI on 3D object IoU (%), 3D pose estimation error (m), and
miss-detection rate (MR, %)

Methods w/o hoi Full model

HOI Type Object Ò Pose Ó MR Ó Object Ò Pose Ó MR Ó

Sit 26.9 0.590 15.2 27.8 0.521 13.1

Hold 17.4 0.517 78.9 17.6 0.490 54.6

Use Laptop 14.1 0.544 58.8 15.0 0.534 43.3

Read 14.5 0.466 65.3 14.3 0.453 41.9

Figure 4.6: Qualitative results of the proposed method on three datasets. The proposed
model improves the initialization with accurate spatial relations and physical plausibility
and demonstrates an outstanding generalization across various datasets.

3D bounding box IoU, and miss-detection rate (MR) of the objects interacted with agents.

The experiments are conducted on PiGraphs dataset and Synthetic SUN RGB-D dataset

with the annotated HOI labels. Note that for the consistency of the ablative analysis across

three different datasets, we merge the sit and sit-at into sit, and eliminate the make-phone-

call. As shown in Table 4.3, the performances of both scene reconstruction and human pose

estimation are hindered without reasoning HOI, indicating HOI helps to infer the relative
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phy.
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Figure 4.7: Qualitative comparison between (a) model w/o phy. and (b) the full model on
PiGraphs dataset.

spatial relationship between agents and objects to improve the performance of both two tasks

further. Moreover, a marked performance gain of miss-detection rate implies the effectiveness

of the top-down sampling process during the joint inference.

• Physical Commonsense. Reasoning about physical commonsense drives the reconstructed

3D scene to be physically plausible and stable. We test 3D estimation of object bounding

boxes on the PiGraphs dataset using w/o phy. and the full model. The full model outper-

forms w/o phy. in two aspects: (i) 3D object detection IoU (from 23.5% to 24.9%), and (ii)

physical violation (from 0.223m to 0.150m); see qualitative comparisons in Figure 4.7. The

physical violation is computed as the distance between the lower surface of an object and

the upper surface of its supporting object. Objects detected by model w/o phy. may float

in the air or penetrate each other, while the full model yields physically plausible results.

4.1.7 Conclusion

This work tackles a challenging holistic`` scene understanding problem to jointly solve 3D

scene reconstruction and 3D human pose estimation from a single RGB image. By incorpo-

rating physical commonsense and reasoning about HOI, our approach leverages the coupled

nature of these two tasks and goes beyond merely reconstructing the 3D scene or human pose

by reasoning about the concurrent action of human in the scene. We design a joint inference
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algorithm which traverses the non-differentiable solution space with MCMC and optimizes

the scene configuration. Experiments on PiGraphs, Watch-n-Patch, and Synthetic SUN

RGB-D demonstrate the efficacy of the proposed algorithm and the general prior knowledge

of HOI and physical commonsense.

4.1.8 Appendix: Additional Results
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Figure 4.8: Additional results on Watch-n-Patch and PiGraphs dataset.
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Figure 4.9: Additional results on Watch-n-Patch and PiGraphs dataset.
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Figure 4.10: Additional results on Watch-n-Patch and PiGraphs dataset.
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Figure 4.11: Additional results on Watch-n-Patch and PiGraphs dataset.
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CHAPTER 5

Human-human Interaction and Collaboration

In this chapter, we explore an important area of social scene understanding, human-human

interaction. Understanding human-human interaction is critical for the machine to sense the

social relations and activities in the scenes, providing potential channels for actively helping

humans. Specifically, we study the human gaze communication in social videos from both

atomic-level and event-level in Section 5.1 and the multi-task multi-agent activities in the

context of human collaboration in Section 5.2.

5.1 Understanding Human Gaze Interaction by Spatio-Temporal

Graph Reasoning

In this section, we addresses a new problem of understanding human gaze communication in

social videos from both atomic-level and event-level, which is significant for studying human

social interactions. To tackle this novel and challenging problem, we contribute a large-scale

video dataset, VACATION, which covers diverse daily social scenes and gaze communication

behaviors with complete annotations of objects and human faces, human attention, and

communication structures and labels in both atomic-level and event-level. Together with

VACATION, we propose a spatio-temporal graph neural network to explicitly represent the

diverse gaze interactions in the social scenes and to infer atomic-level gaze communication

by message passing. We further propose an event network with encoder-decoder structure to

predict the event-level gaze communication. Our experiments demonstrate that the proposed

model improves various baselines significantly in predicting the atomic-level and event-level

gaze communications.
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Figure 5.1: We study human gaze communication dynamics in two hierarchical levels: atomic-level
and event-level. Atomic-level gaze communication describes the fine-grained structures in human
gaze interactions, i.e., single, mutual, avert, refer, follow and share (as shown in the left part).
Event-level gaze communication refers to high-level, complex social communication events, includ-
ing Non-communicative, Mutual Gaze, Gaze Aversion, Gaze Following and Joint Attention. Each
gaze communication event is a temporal composition of some atomic-level gaze communications (as
shown in the right part).

5.1.1 Introduction

In this work, we introduce the task of understanding human gaze communication in social

interactions. Evidence from psychology suggests that eyes are a cognitively special stimu-

lus, with unique “hard-wired” pathways in the brain dedicated to their interpretation and

humans have the unique ability to infer others’ intentions from eye gazes [Eme00]. Gaze com-

munication is a primitive form of human communication, whose underlying social-cognitive

and social-motivational infrastructure acted as a psychological platform on which various

linguistic systems could be built [Tom10]. Though verbal communication has become the

primary form in social interaction, gaze communication still plays an important role in

conveying hidden mental state and augmenting verbal communication [AS17]. To better

understand human communication, we not only need natural language processing (NLP),

but also require a systematical study of human gaze communication mechanism.

The study of human gaze communication in social interaction is essential for the fol-

lowing several reasons: 1) it helps to better understand multi-agent gaze communication

behaviors in realistic social scenes, especially from social and psychological views; 2) it pro-

vides evidences for robot systems to learn human behavior patterns in gaze communication
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and further facilitates intuitive and efficient interactions between human and robot; 3) it

enables simulation of more natural human gaze communication behaviors in Virtual Reality

environment; 4) it builds up a common sense knowledge base of human gaze communication

for studying human mental state in social interaction; 5) it helps to evaluate and diagnose

children with autism.

Over the past decades, lots of research [HBM77, KK97, IB09, JHB18] on the types and

effects of social gazes have been done in cognitive psychology and neuroscience communi-

ties. With previous efforts and established terminologies, we distinguish atomic-level gaze

communications into six classes:

• Single refers to individual gaze behavior without any social communication intention (see

Figure 5.1 (1)).

• Mutual [AS17, AC76] gaze occurs when two agents look into eyes of each other (see Fig-

ure 5.1 (2)), which is the strongest mode of establishing a communicative link between human

agents. Mutual gaze can capture attention, initialize a conversation, maintain engagement,

express feelings of trust and extroversion, and signal availability for interaction in cases like

passing objects to a partner.

• Avert [Rie49, GSR98] refers to averted gaze and happens when gaze of one agent is shifted

away from another in order to avoid mutual gaze (see Figure 5.1 (3)). Avert gaze expresses

distrust, introversion, fear, and can also modulate intimacy, communicate thoughtfulness or

signal cognitive effort such as looking away before responding to a question.

• Refer [SJC06] means referential gaze and happens when one agent tries to induce another

agent’s attention to a target via gaze (see Figure 5.1 (4)). Referential gaze shows intents to

inform, share or request sth. We can use refer gaze to eliminate uncertainty about reference

and respond quickly.

• Follow [She10, Zub08, BM05] means following gaze and happens when one agent perceives

gaze from another and follows to contact with the stimuli the other is attending to (see

Figure 5.1 (5)). Gaze following is to figure out partner’s intention.

• Share [OT06a] means shared gaze and appears when two agents are gazing at the same

119



stimuli (see Figure 5.1 (6)).

The above atomic-level gazes capture the most general, core and fine-grained gaze com-

munication patterns in human social interactions. We further study the long-term, coarse-

grained temporal compositions of the above six atomic-level gaze communication patterns,

and generalize them into totally five gaze communication events, i.e., Non-communicative,

Mutual Gaze, Gaze Aversion, Gaze Following and Joint Attention, as illustrated in the right

part of Figure 5.1. Typically the temporal order of atomic gazes means different phases of

each event. Non-communicative (see Figure 5.1 (a)) and Mutual Gaze (see Figure 5.1 (b))

are one-phase events and simply consist of single and mutual respectively. Gaze Aversion

(see Figure 5.1 (c)) starts from mutual, then avert to single, demonstrating the avoidance of

mutual eye contact. Gaze Following (see Figure 5.1 (d)) is composed of follow and share, but

without mutual, meaning that there is only one-way awareness and observation, no shared

attention nor knowledge. Joint Attention (see Figure 5.1 (e)) is the most advanced and

appears when two agents have the same intention to share attention on a common stimuli

and both know that they are sharing something as common ground. Such event consists of

several phases, typically beginning with mutual gaze to establish communication channel,

proceeding to refer gaze to draw attention to the target, and follow gaze to check the referred

stimuli, and cycling back to mutual gaze to ensure that the experience is shared [MDD14].

Clearly, recognizing and understanding atomic-level gaze communication patterns is neces-

sary and significant first-step for comprehensively understanding human gaze behaviors.

To facilitate the research of gaze communication understanding in computer vision com-

munity, we propose a large-scale social video dataset named VACATION (Video gAze Com-

municATION) with complete gaze communication annotations. With our dataset, we aim

to build spatio-temporal attention graph given a third-person social video sequence with hu-

man face and object bboxes, and predict gaze communication relations for this video in both

atomic-level and event-level. Clearly, this is a structured task that requires a comprehen-

sive modeling of human-human and human-scene interactions in both spatial and temporal

domains.

Inspired by recent advance in graph neural network [QWJ18b, VCC18], we propose a
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novel spatio-temporal reasoning graph network for atomic-level gaze communication detec-

tion as well as an event network with encoder-decoder structure for event-level gaze com-

munication understanding. The reasoning model learns the relations among social entities

and iteratively propagates information over a social graph. The event network utilizes the

encoder-decoder structure to eliminate the noises in gaze communications and learns the

temporal coherence for each event to classify event-level gaze communication.

This work makes three major contributions:

‚ It proposes and addresses a new task of gaze communication learning in social interac-

tion videos. To the best of our knowledge, this is the first work to tackle such problem

in computer vision community.

‚ It presents a large-scale video dataset, named VACATION, covering diverse social

scenes with complete gaze communication annotations and benchmark results for ad-

vancing gaze communication study.

‚ It proposes a spatio-temporal graph neural network and an event network to hierar-

chically reason both atomic- and event-level gaze communications in videos.

5.1.2 Related Work

5.1.2.1 Gaze Communication in HHI

Eye gaze is closely tied to underlying attention, intention, emotion and personality [Kle86].

Gaze communication allows people to communicate at the most basic level regardless of

their verbal language system. Such gaze functions thus transcend cultural differences, form-

ing a universal language [BGF16]. During conversations, eye gaze can be used to convey

information, regulate social intimacy, manage turn-taking [Kle86]. People are also good at

identifying the target of their partner’s referential gaze and use this information to predict

what their partner is going to say [SC11, BPL12].

In a nutshell, gaze communication is omnipresent and multifunctional [BGF16]. Ex-

ploring the role of gaze communication in HHI is essential but has been rarely touched by
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computer vision researchers. Current research in computer vision community [IKN98, BI13,

WS18, FWC19, WLF19] mainly focuses on studying the salient properties of environment

to model human visual attention mechanism. Only a few [PJS12, PS15, FCW18] studied

human shared attention behaviors in social scenes.

5.1.2.2 Gaze Communication in HRI

To improve human-robot collaboration, the field of HRI strives to develop effective gaze

communication for robots [AS17]. Researchers in robotics tried to incorporate responsive,

meaningful and convincing eye gaze into HRI [AS14, AMT15], which helps the humanoid

agent to engender the desired familiarity and trust, and makes HRI more intuitive and fluent.

Their efforts vary widely [SM11, ATG14, AS17], including human-robot visual dialogue inter-

action [MKF12, SC09, LII12], storytelling [MFH06], and socially assistive robotics [TMS07].

For example, a tutoring or assistive robot can demonstrate attention to and engagement

with the user by performing proper mutual and follow gazes [MBS10], direct user attention

to a target using refer gaze, and form joint attention with humans [HT11]. A collaborative

assembly-line robot can also enable object reference and joint attention by gazes. Robots

can also serve as therapy tools for children with autism.

5.1.2.3 Graph Neural Networks

Recently, graph neural networks [SGT09, LTB16, JZS16, GSR17] received increased interests

since they inherit the complementary advantages of graphs (with strong representation abil-

ity) and neural networks (with end-to-end learning power). These models typically pass local

messages on graphs to explicitly capture the relations among nodes, which are shown to be ef-

fective at a large range of structured tasks, such as graph-level classification [BZS14, DDS16,

VCC18], node-level classification [HYL17], relational reasoning [SRB17, KFW18], multi-

agent communications [SSF16, BPL16], human-object interactions [QWJ18b, FCT18], and

scene understanding [MSG17, LTL17]. Some others [DMI15, NAK16, KW17, SK17, CLF18]

tried to generalize convolutional architecture over graph-structured data. Inspired by above
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Figure 5.2: Example frames and annotations of our VACATION dataset, showing
that our dataset covers rich gaze communication behaviors, diverse general social scenes,
different cultures, etc.. It also provides rich annotations, i.e., human face and object bboxes,
gaze communication structures and labels. Human faces and related objects are marked by
boxes with the same color of corresponding communication labels. White lines link entities
with gaze relations in a temporal sequence and white arrows indicate gaze directions in the
current frame. There may exist various number of agents, many different gaze communication
types and complex communication relations in one frame, resulting in a highly-challenging
and structured task. See Section 5.1.3 for details.

efforts, we build a spatio-temporal social graph to explicitly model the rich interactions

in dynamic scenes. Then a spatio-temporal reasoning network is proposed to learn gaze

communications by passing messages over the social graph.

5.1.3 The Proposed VACATION Dataset

VACATION contains 300 social videos with diverse gaze communication behaviors. Example

frames can be found in Figure 5.2. Next we will elaborate VACATION from the following

essential aspects.
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Event- Non-Comm. Mutual Gaze Gaze Aversion Gaze Following Joint Attention
level (%) 28.16 24.00 10.00 10.64 27.20

A
to

m
ic

-l
e
v
e
l(

%
) single 92.20 15.99 3.29 39.26 26.91

mutual 0.76 75.64 14.15 0.00 16.90
avert 1.34 6.21 81.71 0.00 1.18
refer 0.00 0.37 0.15 0.62 7.08

follow 1.04 0.29 0.00 10.71 2.69
share 4.66 1.50 0.70 49.41 45.24

Table 5.1: Statistics of gaze communication categories in our VACATION dataset,
including the distribution of event-level gaze communication category over full dataset and
the distribution of atomic-level gaze communication for each event-level category.

5.1.3.1 Data Collection

Quality and diversity are two essential factors considered in our data collection.

High quality. We searched the Youtube engine for more than 50 famous TV shows and

movies (e.g., The Big Bang Theory, Harry Potter, etc.). Compared with self-shot social data

in laboratory or other limited environments, these stimuli provide much more natural and

richer social interactions in general and representative scenes, and are closer to real human so-

cial behaviors, which helps to better understand and model real human gaze communication

behaviors. After that, about 1, 000 video clips are roughly split from the retrieved results.

We further eliminate the videos with big logo or of low-quality. Each of the rest videos is

then cropped with accurate shot boundaries and uniformly stored in MPEG-4 format with

640ˆ360 spatial resolution. VACATION finally comprises a total of 300 high-quality social

video sequences with 96,993 frames and 3,880-second duration. The lengths of videos span

from 2.2 to 74.56 seconds and are 13.28 seconds on average.

Diverse social scenes. The collected videos cover diverse daily social scenes (e.g., party,

home, office, etc.), with different cultures (e.g., American, Chinese, Indian, etc.). The ap-

pearances of actors/actresses, costume and props, and scenario settings, also vary a lot,

which makes our dataset more diverse and general. By training on such data, algorithms are

supposed to have better generalization ability in handling diverse realistic social scenes.
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VACATION # Video # Frame # Human # GCR

training 180 57,749 123,812 97,265
validation 60 22,005 49,012 42,066

testing 60 17,239 33,950 25,034
full dataset 300 96,993 206,774 164,365

Table 5.2: Statistics of dataset splitting. GCR refers to Gaze Communication Relation.
See Section 5.1.3.2 for more details.

5.1.3.2 Data Annotation and Statistics

Our dataset provides rich annotations, including human face and object bounding boxes,

human attention, atomic-level and event-level gaze communication labels. The annotation

takes about 1,616 hours in total, considering an average annotation time of 1 minute per

frame. Three extra volunteers are included in this process.

Human face and object annotation. We first annotate each frame with bounding boxes

of human face and key object, using the online video annotation platform Vatic [VPR13].

206,774 human face bounding boxes (avg. 2.13 per frame) and 85,441 key object bounding

boxes (avg. 0.88 per frame) are annotated in total.

Human attention annotation. We annotate the attention of each person in each frame,

i.e.the bounding box (human face or object) this person is gazing at.

Gaze communication labeling. The annotators are instructed to annotate both atomic-

level and event-level gaze communication labels for every group of people in each frame. To

ensure the annotation accuracy, we used cross-validation in the annotation process, i.e., two

volunteers annotated all the persons in the videos separately, and the differences between

their annotations were judged by a specialist in this area. See Table 5.1 for the information

regarding the distributions of gaze communication categories.

Dataset splitting. Our dataset is split into training, validation and testing sets with the

ratio of 6:2:2. We arrive at a unique split consisting of 180 training (57,749 frames), 60

validation (22,005 frames), and 60 testing videos (17,239 frames). To avoid over-fitting,

there is no source-overlap among videos in different sets (see Table 5.2 for more details).
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5.1.4 Our Approach

We design a spatio-temporal graph neural network to explicitly represent the diverse inter-

actions in social scenes and infer atomic-level gaze communications by passing messages over

the graph. Given the atomic-level gaze interaction inferences, we further design an event

network with encoder-decoder structure for event-level gaze communication reasoning. As

shown in Figure 5.3, gaze communication entities, i.e., human, social scene, are represented

by graph nodes, gaze communication structures are represented by edges. We introduce

notations and formulations in Section 5.1.4.1 and provide more implementation details in

Section 5.1.4.2.

5.1.4.1 Model Formulation

Social Graph. We first define a social graph as a complete graph G “ pV , Eq, where node

v PV takes unique value from t1, ¨ ¨ ¨ , |V |u, representing the entities (i.e., scene, human) in

social scenes, and edge e“ pv, wq P E indicates a directed edge vÑw, representing all the

possible human-human gaze interactions or human-scene relations. There is a special node

sPV representing the social scene. For node v, its node representation/embedding is denoted

by a V -dimensional vector: xv PRV. Similarly, the edge representation/embedding for edge

e “ pv, wq is denoted by an E-dimensional vector: xv,w P RE. Each human node v P Vzs

has an output state lv PL that takes a value from a set of atomic gaze labels: L“tsingle,

mutual, avert, refer, follow, shareu. We further define an adjacency matrix APr0, 1s|V|ˆ|V| to

represent the communication structure over our complete social graph G, where each element

av,w represents the connectivity from node v to w.

Different from most previous graph neural networks that only focus on inferring graph-

or node-level labels, our model aims to learn the graph structure A and the visual labels

tlvuvPVzs of all the human nodes Vzs simultaneously.

To this end, our spatio-temporal reasoning model is designed to have two steps. First, in

spatial domain, there is a message passing step (Figure 5.3 (b)) that iteratively learns gaze

communication structures A and propagates information over A to update node representa-
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Figure 5.3: Illustration of the proposed spatio-temporal reasoning model for gaze
communication understanding. Given an input social video sequence (a), for each frame, a
spatial reasoning process (b) is first performed for simultaneously capturing gaze communi-
cation relations (social graph structure) and updating node representations through message
propagation. Then, in (c), a temporal reasoning process is applied for each node to dynam-
ically update node representation over temporal domain, which is achieved by an LSTM.
Bolder edges represent higher connectivity weight inferred in spatial reasoning step (b). See
Section 5.1.4.1 for details.

tions. Second, as shown in Figure 5.3 (c), an LSTM is incorporated into our model for more

robust node representation learning by considering temporal dynamics. A more detailed

model architecture is schematically depicted in Figure 5.4. In the following, we describe the

above two steps in detail.

Message Passing based Spatial Reasoning. Inspired by previous graph neural net-

works [GSR17, QWJ18b, KFW18], our message passing step is designed to have three phases,

an edge update phase, a graph structure update phase, and a node update phase. The whole

message passing process runs for N iterations to iteratively propagate information. In n-th

iteration step, we first perform the edge update phase that updates edge representations y
pnq
v,w
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Figure 5.4: Detailed architecture of the proposed spatio-temporal reasoning model
for gaze communication understanding. See the last paragraph in Section 5.1.4.1 for detailed
descriptions.

by collecting information from connected nodes:

ypnqv,w “ fEpxy
pń 1q
v ,ypń 1q

w ,xv,wyq, (5.1)

where y
pń 1q
v indicates the node representation of v in pn´1q-th step, and x¨, ¨y denotes con-

catenation of vectors. fE represents an edge update function fE : R2V`E Ñ RE, which is

implemented by a neural network.

After that, the graph structure update phase updates the adjacency matrix A to infer

the current social graph structure, according to the updated edge representations y
pnq
v,w:

apnqv,w “ σpfApy
pnq
v,wqq, (5.2)

where the connectivity matrix Apnq
“ ra

pnq
v,wsv,w encodes current visual communication struc-

tures. fA :REÑR is a connectivity readout network that maps an edge representation into

the connectivity weight, and σ denotes nonlinear activation function.

Finally, in the node update phase, we update node representations y
pnq
v via considering
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all the incoming edge information weighted by the corresponding connectivity:

ypnqv “ fV px
ÿ

w
apnqv,wypnqv,w,xvyq, (5.3)

where fV :RV ÈÑRV represents a node update network .

The above functions fp¨q are all learned differentiable functions. In the above message

passing process, we infer social communication structures in the graph structure update

phase (Equation (5.2)), where the relations between each social entities are learned through

updated edge representations (Equation (5.1)). Then, the information is propagated through

the learned social graph structure and the hidden state of each node is updated based on its

history and incoming messages from its neighborhoods (Equation (5.3)). If we know whether

there exist interactions between nodes (human, object), i.e., given the groundtruth of A, we

can learn A in an explicit manner, which is similar to the graph parsing network [QWJ18b].

Otherwise, the adjacent matrix A can be viewed as an attention or gating mechanism that

automatically weights the messages and can be learned in an implicit manner; this shares a

similar spirit with graph attention network [VCC18]. More implementation details can be

found in Section 5.1.4.2.

Recurrent Network based Temporal Reasoning. Since our task is defined on a spatio-

temporal domain, temporal dynamics should be considered for more comprehensive reason-

ing. With the updated human node representations tyv PRV uvPVzs from our message passing

based spatial reasoning model, we further apply LSTM to each node for temporal reasoning.

More specifically, our temporal reasoning step has two phases: a temporal message passing

phase and a readout phase. We denote by ytv the feature of a human node v P Vzs at time t,

which is obtained after N -iteration spatial message passing. In the temporal message passing

phase, we propagate the information over the temporal axis using LSTM:

htv “ fLSTMpy
t
v|h

t́ 1
v q, (5.4)

where fLSTM :RV ÑRV is an LSTM based temporal reasoning function that updates the node
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representation using temporal information. ytv is used as the input of the LSTM at time t,

and htv indicates the corresponding hidden state output via considering previous information

ht´1
v .

Then, in the readout phase, for each human node v, a corresponding gaze label l̂tv PL is

predicted from the final node representation htv:

l̂tv “ fRph
t
vq, (5.5)

where fR :RV ÑL maps the node feature into the label space L, which is implemented by a

classifier network.

Event Network. The event network is designed with an encoder-decoder structure to

learn the correlation of the atomic gazes and classify the event-level gaze communication for

each video sequence. To reduce the large variance of video length, we pre-process the input

atomic gaze sequence into two vectors: i) the transition vector that records each transition

from one category of atomic gaze to another, and ii) the frequency vector that computes

the frequency of each atomic type. The encoder individually encodes the transition vector

and frequency vector into two embedded vectors. The decoder decodes the concatenation of

these two embedded vectors and makes final event label prediction. Since the atomic gaze

communications are noisy within communicative activities, the encoder-decoder structure

will try to eliminate the noise and improve the prediction performance. The encoder and

decoder are both implemented by fully-connected layers.

Before going deep into our model implementation, we offer a short summary of the whole

spatio-temporal reasoning process. As shown in Figure 5.4, with an input social video (a),

for each frame, we build an initial complete graph G (b) to represent the gaze communication

entities (i.e., humans and social scene) by nodes and their relations by edges. During the

spatial reasoning step (c), we first update edge representations using Equation (5.1) (note

the changed edge color compared to (b)). Then, in the graph structure update phase, we

infer the graph structure through updating the connectivities between each node pairs using

Equation (5.2) (note the changed edge thickness compared to (b)). In the node update phase,

we update node embeddings using Equation (5.3) (note the changed node color compared
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Atomic-level Gaze Communication (Precision & F1-score)
Task

single mutual avert refer follow share Avg. Acc.
Metric P (%) ÒF (%) ÒP (%) ÒF (%) ÒP (%) ÒF (%) ÒP (%) ÒF (%) ÒP (%) ÒF (%) ÒP (%) ÒF (%) Ò top-1 (%) Ò top-2 (%) Ò

Ours-full
22.10 26.17 98.68 98.60 59.20 74.28 56.90 53.16 32.83 18.05 61.51 46.61 55.02 76.45

(iteration 2)

Chance 16.50 16.45 16.42 16.65 16.65 16.51 16.07 16.06 16.80 16.74 16.20 16.25 16.44 -
CNN 21.32 27.89 15.99 14.48 47.81 50.82 0.00 0.00 19.21 23.10 11.70 2.80 23.05 40.32

CNN+LSTM 22.10 11.78 18.55 16.37 64.24 59.57 13.69 18.55 22.70 29.13 17.18 3.61 24.65 45.50
CNN+SVM 19.92 23.63 28.46 38.30 68.53 76.07 15.15 6.32 23.28 16.87 40.76 49.24 36.23 -

CNN+RF 53.12 57.98 20.78 0.24 0.00 0.00 51.88 27.31 15.90 19.39 35.56 44.42 37.68 -
PRNet 0.00 0.00 47.52 52.54 89.63 58.00 19.49 21.52 19.72 22.05 48.69 62.40 39.59 61.45

VGG16 35.55 48.93 99.70 99.85 76.95 13.04 37.02 31.88 26.62 20.89 53.05 59.88 49.91 72.18
Resnet50 (192-d) 33.61 38.19 78.22 85.66 62.27 76.75 18.58 11.21 35.89 18.55 57.82 60.26 53.72 77.16

AdjMat-only 34.00 22.63 31.46 22.81 38.06 52.42 27.70 26.79 25.42 25.25 32.32 28.69 32.64 46.48
2 branch-iteration 2 20.43 8.93 92.65 76.03 47.57 59.47 40.34 45.35 36.36 35.77 55.15 57.93 49.57 80.33
2 branch-iteration 3 18.92 19.67 99.72 97.18 57.69 60.18 11.92 6.19 31.10 20.40 39.67 53.22 46.39 66.77

Ours-iteration 1 6.69 4.66 49.39 47.96 36.56 39.44 25.89 27.82 35.05 31.93 36.71 42.22 33.67 53.97
Ours-iteration 3 44.83 0.77 51.29 66.41 47.09 64.03 0.00 0.00 25.95 26.20 47.42 46.74 44.52 72.77
Ours-iteration 4 28.01 5.77 99.59 93.15 42.06 59.06 38.46 14.02 22.02 17.54 43.69 55.77 48.35 72.35

Ours w/o. temporal reason. 13.74 10.80 98.64 98.54 54.54 53.17 55.87 53.75 40.83 25.00 45.89 61.55 53.73 80.33
Ours w. implicit learn. 30.60 9.15 33.00 34.56 43.39 56.00 21.50 26.98 22.43 18.63 58.30 39.33 33.74 56.54

Table 5.3: Quantitative results of atomic-level gaze communication prediction.
The best scores are marked in bold.

to (b)). Iterating above processes leads to efficient message propagation in spatial domain.

After several spatial message passing iterations, we feed the enhanced node feature into a

LSTM based temporal reasoning module, to capture the temporal dynamics (Equation (5.4))

and predict final atomic gaze communication labels (Equation (5.5)). We then use event

network to reason about event-level labels based on previous inferred atomic-level label

compositions for a long sequence in a larger time scale.

5.1.4.2 Detailed Network Architecture

Attention Graph Learning. In our social graph, the adjacency matrix A stores the

attention relations between nodes, i.e., representing the interactions between the entities

in the social scene. Since we have annotated all the directed human-human interactions

and human-scene relations (Section 5.1.3.2), we learn the adjacency matrix A in an explicit

manner (under the supervision of ground-truth). Additionally, for the scene node s, since

it’s a ‘dummy’ node, we enforce av,s as 0, where v P V . In this way, other human nodes

cannot influence the state of the scene node during message passing. In our experiments, we

will offer more detailed results regarding learning A in an implicit (w/o. ground-truth) or

explicit manner.

Node/Edge Feature Initialization. For each node vPVzs, the 4096-d features (from the
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Event-level Gaze Communication (Precision & F1-score)
Task

Non-Comm. Mutual Gaze Gaze Aversion Gaze Following Joint Attention Avg. Acc.
Metric P (%) Ò F (%) Ò P (%) Ò F (%) Ò P (%) Ò F (%) Ò P (%) Ò F (%) Ò P (%) Ò F (%) Ò top-1 (%) Ò top-2 (%) Ò

Chance 21.3 29.3 25.0 23.0 20.0 14.8 36.3 15.1 20.3 22.1 22.7 45.0
FC-w/o. GT 43.7 44.3 16.9 23.3 6.2 10.0 8.3 9.1 60.9 40.2 35.6 69.1

Ours-w/o. GT 50.7 49.3 16.7 21.0 8.2 11.3 6.2 7.7 60.9 40.0 37.1 65.5
FC-w. GT 90.7 70.7 12.3 30.8 22.2 30.8 15.0 48.3 56.8 57.1 52.6 86.5

Ours-w. GT 91.4 72.7 14.5 32.3 18.5 45.5 20.0 66.7 62.2 30.8 55.9 79.4

Table 5.4: Quantitative results of event-level gaze communication prediction. The
best scores are marked in bold.

fc7 layer of a pre-trained ResNet50 [HZR16]) are extracted from the corresponding bounding

box as its initial feature xv. For the scene node s, the fc7 feature of the whole frame is used

as its node representation xs. To decrease the amount of parameter, we use fully connected

layer to compress all the node features into 6-d and then encode a 6-d node position info

with it. For an edge e“pv, wq PV , we just concatenate the related two node features as its

initial feature xv,w. Thus, we have V “12 and E“24.

Graph Network Implementations. The functions fp¨q in Equation (5.1), Equation (5.2)

and Equation (5.5) are all implemented by fully connected layers, whose configurations can

be determined according to their corresponding definitions. The function in Equation (5.3)

is implemented by gated recurrent unit (GRU) network.

Loss functions. When explicitly learning the adjacency matrix, we treat it as a binary

classification problem and use the cross entropy loss. We also employ standard cross entropy

loss for the multi-class classification of gaze communication labels.

5.1.5 Experiments

5.1.5.1 Experimental Setup

Evaluation Metrics. Four evaluation metrics, we use precision, F1-score, top-1 Avg. Acc.

and top-2 Avg. Acc. in our experiments. Precision P refers to the ratio of true-positive

classifications to all positive classifications. F1-score F is the harmonic mean of the precision

and recall: 2ˆprecisionˆrecall{pprecision`recallq. Top-1 Avg. Acc. and top-2 Avg. Acc.

calculate the average label classification accuracy over all the test set.

Implementation Details. Our model is implemented by PyTorch. During training phase,
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Figure 5.5: Qualitative results of atomic-level gaze communication prediction.
Correctly inferred labels are shown in black while error examples are shown in red.

the learning rate is set to 1e-1, and decays by 0.1 per epoch. For the atomic-gaze interaction

temporal reasoning module, we set the sequential length to 5 frames according to our dataset

statistics. The training process takes about 10 epochs (5 hours) to roughly converge with

an NVIDIA TITAN X GPU.

Baselines. To better evaluate the performance of our model, we consider the following

baselines:

• Chance is a weak baseline, i.e., randomly assigning an atomic gaze communication label

to each human node.

• CNN uses three Conv2d layers to extract features for each human node and concatenates

the features with position info. for label classification (no spatial communication structure,

no temporal relations).

• CNN+LSTM feeds the CNN-based node feature to an LSTM (only temporal dynamics,

no spatial structures).

• CNN+SVM concatenates the CNN-based node features and feeds it into a Support Vector

Machine classifier.

• CNN+RF replaces the above SVM classifier with a Random Forest classifier.

• FC-w/o. GT & FC-w. GT are fully connected layers without or with ground truth atomic

gaze labels.

Ablation Study. To assess the effectiveness of our essential model components, we derive
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the following variants:

• Different node feature. We try different ways to extract node features. PRNet uses 68 3D

face keypoints extracted by PRNet [FWS18]. VGG16 replaces Resnet50 with VGG16 [SZ14].

Resnet50 (192-d) compresses the 4096-d features from fc7 layer of Resnet50 [HZR16] to 192-

d.

• AdjMat-only directly feeds the explicitly learned adjacency matrix into some Conv3d layers

for classification.

• 2 branch concatenates a second adjacency matrix branch alongside the GNN branch for

classification. We test with different message passing iterations.

• Ours-iteration 1,2,3,4 test different message passing iterations in the spatial reasoning

phase of our full model.

• Ours w/o. temporal reason. replaces LSTM with Cond3d layers in the temporal reasoning

phase of our full model.

• Ours w. implicit learn. is achieved by unsupervisedly learning adjacent matrix A (w/o.

attention ground truths).

5.1.5.2 Results and Analyses

Overall Quantitative Results. The quantitative results are shown in Table 5.3 and

Table 5.4 respectively for the atomic-level and event-level gaze communication classification

experiments. For the atomic-level task, our full model achieves the best top-1 avg. acc.

(55.02%) on the test set and shows good and balanced performance for each atomic type

instead of overfitting to certain categories. For the event-level task, our event network

improves the top-1 avg. acc. on the test set, achieving 37.1% with the predicted atomic

labels and 55.9% with the ground truth atomic labels.

In-depth Analyses. For atomic-level task, we examined different ways to extract node

features and find Restnet50 the best. Also, compressing the Resnet50 feature to a low di-

mension still performs well and efficiently (full model vs. Resnet50 192-d). The performance
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of AdjMat-only which directly uses the concatenated adjacency matrix can obtain some rea-

sonable results compared to the weak baselines but not good enough, which is probably

because that gaze communication dynamic understanding is not simply about geometric

attention relations, but also depends on a deep and comprehensive understanding of spatial-

temporal scene context. We examine the effect of iterative message passing and find it is

able to gradually improve the performance in general. But with iterations increased to a

certain extent, the performance drops slightly.

Qualitative Results. Figure 5.5 shows some visual results of our full model for atomic-

level gaze communication recognition. The predicted communication structures are shown

with bounding boxes and arrows. Our method can correctly recognize different atomic-level

gaze communication types (shown in black) with effective spatial-temporal graph reasoning.

We also present some failure cases (shown in red), which may be due to the ambiguity and

subtlety of gaze interactions, and the illegibility of eyes. Also, the shift between gaze phases

could be fast and some phases are very short, making it hard to recognize.

5.1.6 Conclusion

We address a new problem of inferring human gaze communication from both atomic-level

and event-level in third-person social videos. We propose a new video dataset VACA-

TION and a spatial-temporal graph reasoning model, and show benchmark results on our

dataset. We hope our work will serve as important resources to facilitate future studies

related to this important topic.
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5.2 A Multi-view Dataset for Learning Multi-task Multi-agent

Activities

Understanding and interpreting human actions is a long-standing challenge and a critical

indicator of perception in artificial intelligence. However, a few imperative components

of daily human activities are largely missed in prior literature, including the goal-directed

actions, concurrent multi-tasks, and collaborations among multi-agents.

In this section, we introduce the LEMMA dataset to provide a single home to address

these missing dimensions with meticulously designed settings, wherein the number of tasks

and agents varies to highlight different learning objectives. We densely annotate the atomic-

actions with human-object interactions to provide ground-truths of the compositionality,

scheduling, and assignment of daily activities. We further devise challenging compositional

action recognition and action/task anticipation benchmarks with baseline models to measure

the capability of compositional action understanding and temporal reasoning. We hope this

effort would drive the machine vision community to examine goal-directed human activities

and further study the task scheduling and assignment in the real world.

5.2.1 Introduction

Activity understanding is one of the most fundamental problems in artificial intelligence and

computer vision. As the most readily available learning source, videos of daily human activ-

ities could be used to train intelligent agents and, in turn, to assist humans. However, com-

pared to recent progress in learning from static images [AAL15, HZR16, HGD17, RHG15],

current machine vision’s ability to understand activities from videos still falls short. Admit-

tedly, activity understanding is inherently more challenging, which requires reason about the

complex structures in activities along the additional temporal dimension; but we argue there

are more profound reasons that we must look back to the origin of activity understanding.

The study and analysis of human motion perception are rooted in the field of neuro-

science [TCS08]. Using a dot-representation of human motions, Johansson [Joh73] adopted
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Figure 5.6: Illustrations of the proposed multi-view dataset with annotations. From top
to bottom: frames captured from the third-person primary view, frames captured from the
third-person side view, annotated segments of each agent executing tasks, and corresponding
frames captured from the first-person view.

a method to produce proximal patterns (i.e., the moving light display experiment), which

demonstrated that human perception of activities does not tightly couple with pixel-based

features ; human subjects can still perceive the semantics of activities from sparse repre-

sentations of motions. Evidence from developmental psychology, the classic Heider-Simmel

experiment, further suggests that we perceive human activities from as goal-directed be-

haviors [Woo98, BBS01, GBK02b, CG07]; it is the underlying intent, rather than the

surface pixels or behavior, that matters when we observe motions [BB01]. Such a goal-

directed [LMR99] perspective of activity understanding has been largely left untouched

in computer vision.

Daily human activities are intrinsically multi-tasked [Mon03, RME01]; understanding ac-

tivity naturally demands a learning system to interpret concurrent interactions. As agents’

decision-making processes are deeply affected by their unique social values, task schedul-

ing is significantly affected by interactions (e.g., cooperation, competition, subordination)

among multi-agents [KHA16]. These observations implicate that the machine vision system

must objectively understand how a given task should be decomposed into atomic-actions,
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how multi-tasks should be executed and coordinated in parallel among multi-agents, and

take the perspective from human agents to understand why the observed human activities

are optimal solutions. Such a decompositional, multi-task, multi-agent, diagnostic-

driven, social perspective of activity understanding is critical for an intelligent agent to

understand human behavior and team with humans collaboratively; yet it is broadly missing

in activity understanding literature.

The semantics of human actions are intrinsically ambiguous when described in natural

language. For instance, although both “opening the fridge” and “opening a book” use the

action verb “open,” their semantics of the actions are utterly different. In this paper, we take

the stance of Grice’s influential work on language act [Gri75]—technical tools for reasoning

about rational action should elucidate linguistic phenomena [GF16]. Specifically, the compo-

sitional relations between the verbs and nouns could reveal the functionality of the object and

the patterns of human-object interactions, which subsequently facilitate the understanding

of the observed human activities and the language that describes them. Though the previous

work [GKM17] attempted to address this issue, more general and flexible compositional

relations for describing human actions interacting with objects are requisite for a

goal-directed activity understanding.

Motivated by these deficiencies in prior work, we introduce the LEMMA dataset to

explore the essence of complex human activities in a goal-directed, multi-agent, multi-task

setting with ground-truth labels of compositional atomic-actions and their associated tasks.

By quantifying the scenarios to up to two multi-step tasks with two agents, we strive to

address human multi-task and multi-agent interactions in four scenarios: single-agent single-

task (1ˆ 1), single-agent multi-task (1ˆ 2), multi-agent single-task (2ˆ 1), and multi-agent

multi-task (2 ˆ 2). Task instructions are only given to one agent in the 2 ˆ 1 setting to

resemble the robot-helping scenario, hoping that the learned perception models could be

applied in robotic tasks (especially in HRI) in the near future.

Both the third-person views (TPVs) and the first-person views (FPVs) were recorded to

account for different perspectives of the same activities; see Figure 5.6. We densely annotate

atomic-actions (in the form of compositional verb-noun pairs) and tasks of each atomic-
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action, to facilitate the learning of multi-agent multi-task task scheduling and assignment;

see more details in Section 5.2.3.

5.2.2 Related Work

In this section, we review and compare prior indoor activity datasets on the basis of tasks

and captured video contents; see a detailed summary in Table 5.5.

Crowd-sourced from online videos and movie sharing platforms, typical large-scale video

datasets [SZS12, KTS14, CEG15, CZ17, FKE18] focus on video-level summarization

and classification. Although activity classes exhibit a large inter-class variability, spanning

from outdoor sports activities to indoor household activities, they generally lack sequential,

goal-directed activities. Notably, they suffer from a major drawback [GR20]; activities are

highly correlated to the general scene and object context, possessing a strong dataset bias

for activity understanding.

Some datasets tackle the human atomic-actions using short clips or limited tasks, with

a focus on the semantics of action verbs and objects [GKM17], 3D action analysis [LZL10,

IPO13, SCH16], and action grounding with multi-modality inputs [MAZ19]. Although such

datasets are suitable for atomic-actions, they are intrinsically impaired at studying the long-

term reasoning of goal-directed human activities.

Recently, concurrent actions have been taken into consideration. For instance, Cha-

rades [SVW16] is a large-scale benchmark for household activities, and Charades-Ego [SGS18]

steps further with both FPVs and TPVs. However, the activities involved are mostly unre-

Table 5.5: Comparisons between LEMMA and relevant indoor activity datasets.

Dataset
Task

Annotation
Multi-
agent

Multi-
task

Multi-
view Samples Frames

Action
Classes

Action
Segments

Actions per
Video Modality Year

MPII Cooking [RAA12] 3 7 7 7 273 2.9M 88 14,105 51.7 RGB 2012
ADL [PR12] 7 7 3 7 20 1.0M 32 436 13.6 RGB 2012

50Salads [SM13] 3 7 7 7 50 0.5M 17 966 19.3 RGB-D 2013
CAD-120 [KGS13] 7 7 7 7 120 0.1M 10 1,175 9.8 RGB-D 2013
Breakfast [KAS14] 3 7 7 3 433 3.0M 50 3,078 7.1 RGB 2014

Watch-n-Patch [WZS15] 3 7 7 7 458 0.1M 21 2978 6.5 RGB-D 2015
Charades [SVW16] 7 7 3 7 9,848 7.4M 157 67,000 6.8 RGB 2016

Something-Something [GKM17] 7 7 7 7 108,499 - 174 108,499 1.0 RGB 2017
EGTEA GAZE+ [LLR18] 3 7 7 7 86 2.4M 106 10,325 120.1 RGB 2018

EPIC-KITCHENS [DDM18] 7 7 3 7 432 11.5M 149 39,596 91.7 RGB 2018
LEMMA (proposed) 3 3 3 3 324 4.6M 641 11,781 36.4 RGB-D 2020
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lated to specific goals due to the crowdsourced script generation process. Similarly, although

Multi-THUMOS [YRJ18] and AVA [GSR18] focus on highly paralleled activities, and some

datasets look at the temporal order of activities [BLB14, TZS16], the unnaturally scripted

activities result in the lack of meaningful goal-directed tasks exhibited in our daily life.

Conversely, instructional video datasets [ABA16, SM13, KAS14, KGS13, RRR16]

tackle goal-directed multi-step tasks, mostly in cooking, repairing, and assembling activi-

ties. In spite of their relevance, they fail to account for multi-agent or multi-task problems.

EPIC-KITCHENS [DDM18] is perhaps the only exception; it records naturally paralleled

task execution of agents in kitchen environments, but with no task specification or multi-

agent interactions. Additionally, prior instructional video datasets have either drastic view

perspective changes [ZXC18, ABA16, TDR19, TCH17] or limited egocentric view with severe

occlusions [PR12, LLR18], hindering the activity understanding.

Another related stream of work is the learning of group-level activities in a multi-

agent setting [IMD16], such as detecting key actors [RHA16], predicting future trajecto-

ries [PES09, LCL07], and recognizing collective activities [CSS09, OHP11, SXR15]. However,

such coarse-grained multi-agent interactions leave the latent subtlety of collaboration and

task assignment untouched. Although simulation-based multi-agent environments [BKM20,

VBC19, BBC19] can partially address such an issue, learning from noisy and real visual

input in physical work is still essential for understanding collaborative planning behaviors of

agents in the context of complex daily tasks.

The collected LEMMA dataset strives to address the shortcomings of the aforementioned

works, capturing goal-directed, decompositional, multi-task activities with multi-agent col-

laborations. As shown in Table 5.5, the size, annotation, and actions per video of LEMMA

are at a comparable scale to state-of-the-art benchmarks. We hope such a design will boost

the study of human activity understanding and potentially motivate new cross-disciplinary

research insights.
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5.2.2.1 Contributions

This paper’s contribution is three-fold. (i) We design and collect a multi-view video dataset,

capturing multi-agent, multi-task activities with goal-directed daily tasks. (ii) We annotate

the dataset, focusing on the compositionality of actions and the governing task for each

atomic-action. (iii) We provide compositional action recognition and action/task anticipa-

tion benchmarks by considering the aforementioned features; we also compare and analyze

multiple baseline models to promote future research on human activity understanding.

5.2.3 The LEMMA Dataset

This section describes the design, data collection, and data annotation process of the LEMMA

dataset. The dataset is profiled by various statistics from diversified perspectives to highlight

its potentials in activity understanding.1

5.2.3.1 Activities and Scenarios

We first build a task pool of 15 common tasks in the kitchen (e.g., “make juice,” “make

cereal”) and living room (e.g.“watch TV,” “water plant”). On top of these tasks, we design

four types of scenarios (with a different focus) to study goal-directed multi-step multi-task

indoor activities in multi-agent settings.

1. Single-agent Single-task (1 ˆ 1): Each participant was first asked to perform all

tasks from the task pool independently; this ensures participants are clear with the

goal of each task and could schedule and assign tasks efficiently in later multi-task

or multi-agent scenarios. Participants were asked to read the instructions and walk

around to get familiarized with the new environments.

2. Single-agent Multi-task (1ˆ2): Each participant was then asked to simultaneously

perform two tasks, randomly sampled from the task pool. The participants determined

1The dataset will be made publicly available at the following website with download links and util code:
https://sites.google.com/view/lemma-activity.
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the order of task executions without any restrictions.

3. Multi-agent Single-task (2 ˆ 1): Two participants were asked to perform a sin-

gle task cooperatively; the task is randomly selected from the task pool. To emulate

human-robot teaming accurately, only one participant (leader) was provided with task

instructions; the other participant (helper), with no knowledge of the task, was asked

to collaborate with the leader agent to finish the task efficiently. Only nonverbal com-

munications (e.g., gestures) were allowed between two participants; this design would

open up new venues on nonverbal communications and the emergence of language in

real-world environments.

4. Multi-agent Multi-task (2ˆ2): Both participants were provided with task instruc-

tions. Since both participants were asked to accomplish two complex multi-step tasks

collaboratively, this scenario has the most natural activity/task patterns and richest

mechanisms for learning task scheduling and assignment.

In total, the LEMMA dataset includes 37 unique task combinations in the multi-task

scenarios. Participants were explicitly instructed to perform tasks efficiently and provided

with a brief task instruction with basic environment information. Except for the specification

of the goal states for each task, we add no additional constraint to the order of task execution;

participants perform tasks naturally and freely. Figure 5.7 shows a sample instruction for

the 2ˆ 1 scenario.

5.2.3.2 Data Collection

We recorded the data in 7 different Airbnb houses, performed by 8 individuals in 14 unique

kitchens/living rooms. To provide different views of performing the daily activities and avoid

occlusion in narrow spaces, we set up two Kinect Azure cameras to capture the RGB-D videos

of the global scene and human bodies. In addition, each participant was instructed to wear

a head-mounted GoPro camera to capture detailed agent-specific actions in an egocentric

view.
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Lorem ipsum

In this task, you are asked to make watermelon juice. Here are things to know before your start:
- All the items needed for this task can be found either in the fridge, on the table, or in one of the drawers or closets.
- Please cut the watermelon into pieces before blending it with the juicer.
- Please keep the kitchen clean; wash all the tools/objects you used.
- You will have an additional helper to collaborate with you.
  - Do Not speak with them. They do NOT know anything about the task you are working on.
  - Feel free to ask them for help, but only using non-verbal communication (e.g., gestures). For instance, you may point
    to something, or any other gestues you think may help instruct them.

In this task, you are asked to collaborate with your friend to finish a task in the kitchen.
Here are things to know before your start:
- All the items needed for this task can be found either in the fridge, on the table, or in one of the drawers or closets.
- Please keep the kitchen clean; wash all the tools/objects you used.
- As only your friend knows the task instruction, please try to infer what the task is and offer helps.
- You may not speak with your friend. You can only use non-verbal communication (e.g., gestures).

Leader

Helper

Figure 5.7: An exemplar task instruction of making juice for two agents in a Multi-agent
Single-task (2ˆ 1) scenario. Middle: Point clouds, TPVs, and FPVs.

In post-processing, we synchronize the camera recordings of all views at a frame rate of

24 FPS. Figure 5.7 shows an example of a scene with a point cloud merged from two Kinects

and four RGB views from both Kinects and GoPros. Combining TPVs and FPVs captures

most of the details of performing daily activities, provides sufficient data for understanding

human activities, and benefits future research in embodied vision. The additional depth

information and 3D human skeletons captured by Kinects can also be adopted for future 3D

understanding tasks.

5.2.3.3 Ground-truth Annotation

We used the Amazon Mechanical Turk (AMT) to annotate both human bounding boxes and

action information in the synchronized recordings. Specifically, action information includes

the temporal localization of segments, semantic labels, and the governing task of each atomic-

action. The semantic labels of atomic-actions are composed of verbs and nouns, representing
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Figure 5.8: Statistics of the LEMMA dataset.

flexible compositional relations to describe human actions. Additional details are provided

below.

Bounding Boxes and Segments: Bounding boxes of humans are annotated on the pri-

mary view of TPVs. Skeletons captured by Kinects are used to provide initial estimations

of bounding boxes. Next, we use Vatic [VPR13] to adjust bounding boxes and annotate the

segments of atomic-actions. The segments of atomic-actions are defined by verbs without

corresponding nouns, for example, “put to using ,” “pour into from .” Each

video was first annotated by two AMT workers; task-irrelevant actions (e.g., “walking,”

“holding”) are ignored. We then compute the Intersection over Union (IoU) of both bound-

ing boxes and temporal segments. A third AMT worker is asked to fine-tune the annotations

if the IoU of bounding boxes or segments annotated is lower than 0.5.
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Atomic-actions and Activities: Given the verbs of the atomic-action segments, two

AMT workers were asked to fill in the blanks of the verb patterns and annotate the governing

tasks in multi-task scenarios with a self-developed interactive annotation tool. We allow

concurrent actions for each agent with multiple nouns for the same verb; for example, “get

spoon, cup from table using hand.” As there might exist ambiguities in describing the

atomic-actions with natural languages, such as the possible annotations of “wash cup using

water” vs. “wash cup using sink,” we manually go through all the annotations and resolve

the ambiguous action annotations following a uniform criterion.

5.2.3.4 Dataset Statistics

In total, we recorded 324 activities, generating 324ˆ 2 TPV videos (from both Kinects) and

445 FPV videos. Among them, 136 activities were performed in kitchens and the remaining

188 in the living rooms. The collected LEMMA dataset consists of 127 1 ˆ 1 activities, 76

1 ˆ 2 activities, 66 2 ˆ 1 activities, and 55 2 ˆ 2 activities. The frequency of the recorded

tasks is shown in Figure 5.8b. The total duration of all the activities is 10.1 hours, with an

average duration of 2 minutes per video and the longest activity of 7 minutes.

We retrieved a total of 4.6 million images during post-processing, including 2.9 million

RGB images captured by both GoPros and Kinects and 1.7 million depth images captured

by Kinects. We annotated 0.9 million RGB frames captured by the primary view Kinect

and gathered 0.8 million annotated frames with one or more actions performed by each of

the agents (if multiple).

After resolving annotation ambiguities, we collected 24 verb classes and 64 noun classes,

resulting in 862 compositional atomic-action labels, of which 641 appear more than 50 times.

We show the frequencies of annotated verbs and nouns in Figures 5.8a and 5.8c; both dis-

tributions roughly follow the Zipf’s law.

Co-occurrence relations among annotated verbs, nouns, and tasks are shown in Figure 5.9.

As we can see from Figures 5.9a and 5.9c, verbs like “get” and “put” co-occur with various

nouns in almost all of the tasks, which aligns with our intuition that moving objects around
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Figure 5.9: The co-occurrence statistics for verbs, nouns, and tasks in LEMMA.

consists a large portion of our daily activities. Interactive actions between participants are

captured by verbs (e.g., “point-to”) and nouns (e.g., “P1,” short for “participant 1”) in the

form of annotations like “get knife from P1 using hand” or “point-to sink.”

5.2.4 Benchmarks

Aligned with our motivations, two general goals are constructed to evaluate indoor human

activity understanding on the collected LEMMA dataset: (i) recognize atomic-actions and
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their semantics; and (ii) understand the goal-directed activities and monitor multiple con-

current tasks, especially in multi-agent scenarios. Specifically, we define two challenging

benchmarks to test the capability of understanding complex goal-directed activities for com-

puter vision algorithms.

5.2.4.1 Compositional Action Recognition

Human indoor activities are composed of fine-grained action segments with rich semantics.

As mentioned by Goyal et al. [GKM17], interactions with objects are highly purposive. From

the simplest verb of “put,” we can generate a plethora of combinations of objects and target

places, such as “put cup onto table,” “put fork into drawer.” Situations could become even

more challenging when objects were used as tools; for example, “put meat into pan using

fork.”

Motivated by the above observation, we propose the compositional action recognition

benchmark on the collected LEMMA dataset with each object attributed to a specific se-

mantic position in the action label. Specifically, we build 24 compositional action templates;

see Figure 5.10a for some examples. In these action templates, each noun could denote an

interacting object, a target or a source location, or a tool used by a human agent to perform

certain actions.

The proposed compositional action recognition benchmark is challenging; it requires com-

putational models to correctly detect the ongoing concurrent action verbs as well as the

nouns at their correct semantic positions. We evaluate model performances by metrics on

compositional action recognition in both FPVs and TPVs. Specifically, the model is asked

to predict (i) multiple labels in verb recognition for concurrent actions (e.g., “watch tv” and

“drink with cup” at the same time), and (ii) multiple labels in noun recognition for each

semantic position given verbs, representing the interactions with multiple objects using the

same action (e.g., “wash spoon, cup using sink”). Figure 5.10b shows the schematics of the

evaluation process. For training and testing on TPVs, we provide ground-truth bounding

boxes of humans as additional information on spatial localization.
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Put bread to plate with hand, knife
Get cup, spoon from table with hand
Pour milk into bowl with hand
Blend coffee with spoon
Drink milk with spoon, cup
Fill cup with kettle
Play games with controller

Turn off juicer with hand
Cut watermelon with knife

Turn on microwave with hand
Throw wrapping into trashcan
Point to cereal
Sit on sofa

Switch with remote
Watch TV
Open fridge

Targets Location ToolAction

(a) Compositional action templates

GT: Put watermelon to juicer with knife
Cut watermelon with knife

PR: Get knife, watermelon from table with hand
Cut watermelon with knife

Put Get Cut

... 1 0 … 1 …GT

... 0fn 1fp … 1tp …PR

... 0 … 1 … …GT

... 1fp … 1tp … …PR

Watermelon

... 0 … 1 … …

... 0 … 1tp … …

WatermelonKnife Knife

0 … 1 … … …GT
1fp … 0fn … … …PR

Juicer

0 … 0 … … …
0 … 0 … … …

JuicerTable Table

… 1 … … … 0GT
… 0fn … … … 1fpPR

Hand

… 1 … … … 0
… 1tp … … … 0

Knife Hand Knife

Action

Target

Location

Tool

(b) Prediction of verbs and nouns

Figure 5.10: Compositional action recognition benchmark on LEMMA. (a) Examples of
Compositional action templates. Yellow denotes verbs. Blue, green, and brown denote
nouns for an interacting object, target/source location, and tool, respectively. (b) Examples
of predictions of the verbs and nouns in compositional action recognition. Verbs and nouns
are evaluated through multi-label classification.

5.2.4.2 Action and Task Anticipation

As emphasized throughout the paper, the most significant factor of human activities is the

goal-directed, teleological stand. An in-depth understanding of goal-directed tasks demands

a predictive ability of latent goals, action preferences, and potential outcomes. To tackle

these challenges, we propose the action and task anticipation benchmark on the collected

LEMMA dataset. Specifically, we evaluate model performances for the anticipation (i.e.,

predictions for the next action segment) of action and task with both FPV and TPV videos.

This benchmark provides both the training and testing data in all four scenarios of

activities to study the goal-directed multi-task multi-agent problem. As there is an innate

discrepancy of prediction difficulties among these four scenarios, we gradually increase the

overall prediction difficulty, akin to a curriculum learning process, by setting the percentage

of training videos to be 3/4, 1/4, 1/4, and 1/4 for 1 ˆ 1, 1 ˆ 2, 2 ˆ 1 and 2 ˆ 2 scenarios,

respectively. Intuitively, with sufficient clean demonstrations of tasks in 1 ˆ 1 scenario,

interpreting tasks in more complex settings (i.e., 1 ˆ 2, 2 ˆ 1, and 2 ˆ 2) should be easier,

thus requiring less learning samples; such a design encourages the model to generalize. The
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model performance is evaluated individually for each scenario.

5.2.5 Experiments

In this section, we conduct experiments on the two proposed benchmarks with details on

evaluation metrics, experimental settings, and baseline results. We further discuss the results

to highlight the underlying challenges of each task.

5.2.5.1 Compositional Action Recognition

Experimental Setup: We randomly split all the video samples into training and test sets

with a ratio of 3:1, resulting in 243 recorded activities for training and the remaining 81 for

testing. Due to the multi-agent setup, each activity may have multiple FPVs; 333 (out of

445) FPV videos are split into training. In TPVs, the recordings of the primary view with

the ground-truth human bounding box annotations are given for both training and testing

videos. Results are evaluated on two separate sources of inputs: FPVs and TPVs.

Evaluation Metrics: Model performances are evaluated separately for verbs, nouns, and

compositional action recognition. Verb and compositional action recognition are treated as

multi-label classifications with 25 verb classes and 863 compositional action classes (including

a “null” action). After generating multi-hot labels for each semantic position in the presented

verb, noun recognition is evaluated as multi-label classification (64 object classes). Average

precision, recall, and F1-score for all predictions are reported on testing sets. During the

evaluation, we sample image frames at 5 FPS and evaluate on these frames.

Methods: We adopt two recent 3D-CNN networks, I3D [CZ17] and SlowFast Network [FFM19],

as the baseline models. The baseline models predict the compositional action directly. Con-

sidering compositionality of verbs and nouns, we propose two variants of the baseline mod-

els: (i) a multi-branch network (branching model) that builds on the bottleneck layer of the

backbone models to leverage both verb and noun supervision, and (ii) a multi-step inference
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model (sequential model), wherein verbs are first inferred with a beam search and then fed

into object inference with their verb embeddings for joint learning.

Implementation Details: The training procedure utilizes all annotated segments in the

training set. Additionally, we re-scale all the images with the short side to 256 pixels. To

feed data into 3D-CNN models, 4 frames are first sampled for each action segment as center

frames, and an additional 8 frames are then uniformly sampled around center frames with

a window length of 32. We train each model on 8 Titan RTX GPUs on a single computing

node for 50 epochs (20k iterations) with a batch size of 96. We use warm-up strategy and

perform large mini-batch batch normalization, as suggested in [GDG17]. The learning rate

is initially set to 0.0125 for each parallel branch and decays with a cosine annealing. Other

settings of the backbone models are the same as in [FFM19]. For the proposed sequential

model, we use the beam search with a size of 5 for action inference. We extract bounding

box features of humans with ROIAlign [HGD17] for frames in TPVs.

Results and Discussion: Table 5.6 shows quantitative results of predicting verbs, nouns,

and compositional actions for the compositional action recognition task. For FPVs, rather

than directly predicting the compositional actions (baseline models), predicting the verbs and

nouns with their semantic positions boosts the performance on all metrics, indicating that

understanding the compositional structures of human actions indeed supports the prediction.

We also observe that the results of compositional action recognition in the sequential models

are slightly lower than the branching model due to the aggregated error brought in by a

relatively low precision („25%) of the verb recognition.

In comparison, the results of compositional action recognition in TPVs are significantly

lower than those in the FPVs due to severe occlusion. It also shows that predicting the

composition of verbs and nouns makes no significant improvement compared with predicting

compositional action directly. Such a result implies that current models could not capture the

details of compositions between verbs and nouns from TPVs. Taken together, the results

indicate that fusion among the representations of visual embodiment between TPVs and
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Table 5.6: Comparisons of compositional action recognition on LEMMA.

View
Type Method

Verb Noun Compositional Action
Avg.Prec Avg.Rec Avg.F1 Avg.Prec Avg.Rec Avg.F1 Avg.Prec Avg.Rec Avg.F1

F
P

V

I3D 17.09 43.89 24.60 3.42 16.15 5.72 11.07 39.49 17.30
Slowfast 22.27 56.42 31.94 4.31 20.60 7.13 18.68 50.65 27.3

I3D sequential 25.04 57.00 34.80 19.36 75.29 30.80 18.00 50.04 26.47
Slowfast sequential 24.30 49.71 32.64 17.95 59.11 27.54 26.80 38.41 31.57

I3D branching 25.73 55.62 35.8 18.63 69.76 29.41 22.29 48.46 30.53
Slowfast branching 26.16 56.33 35.73 18.18 73.46 29.15 27.97 48.87 35.58

T
P

V

I3D 14.18 36.34 20.40 2.29 11.05 3.79 6.85 23.82 10.64
Slowfast 14.28 37.38 20.66 2.32 11.14 3.83 7.76 23.25 16.31

I3D sequential 16.17 30.17 21.05 7.79 25.41 11.93 2.23 12.67 3.79
Slowfast sequential 15.31 28.84 20.00 6.37 22.39 9.92 3.27 9.16 4.82

I3D branching 12.92 32.09 18.43 12.75 17.70 14.82 4.67 20.76 7.6
Slowfast branching 16.64 33.40 22.21 17.29 18.36 17.81 6.52 21.55 10.01

GT
PR

put meat to table with hand
put meat to table with hand

pour milk to cup with hand
pour milk to cup with hand

switch with Remote, Watch TV
switch with Remote, Watch TV

put vacuum to floor with hand
put vacuum to floor with hand

GT

PR

watch TV, sweep floor with vacuum
watch TV

pour tank to sink with hand
pour tank to sink with hand
fill tank with sink

wash juicer
wash juicer, turn-off sink with hand

play game with controller
play game with controller
switch with remote

Figure 5.11: Qualitative results of compositional action recognition on LEMMA. From top
to bottom, we show correct predictions and failure examples. Red marks wrong verb or noun
predictions, green indicates correct verb or noun predictions.

FPVs might be a crucial ingredient to tackle this problem in the future.

Figure 5.11 shows qualitative results for the composed action recognition task.

5.2.5.2 Action and Task Anticipations

Experimental Setup: We split the training and test sets with ratios 3 : 1, 1 : 3, 1 : 3,

1 : 3 for the four scenarios 1 ˆ 1, 1 ˆ 2, 2 ˆ 1, 2 ˆ 2, respectively. Such a spit results in

training set with (96, 19, 16, 13) activities and a test set with (31, 57, 50, 42) activities in
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four scenarios. During training and testing, the computational models have access to both

FPVs and TPVs, together with the ground-truth human bounding boxes annotations of the

TPV primary view.

Evaluation Metrics: Model performances are evaluated individually (per agent) for the

action and task anticipations task. Specifically, both action and task anticipations are eval-

uated as multi-label classifications with 863 compositional action classes (including a “null”

action) and 15 task classes. Average precision, recall, and F1-score are reported individually

for each of the four scenarios on the testing sets. Similar to the protocol used in the above

compositional action recognition task, we re-sample image frames at 5 FPS and evaluate

these sub-sampled frames during the testing phase.

Methods: We leverage the visual features extracted by the pre-trained SlowFast model in

compositional action recognition for baseline models. Specifically, we compare two backbone

models: (i) using segment-level recognition feature (SF) directly by adding an MLP on top

of the features, and (ii) using long-term feature bank (LFB) with max pooling [WFF19].

For activities with multi-agent interactions, we use the other agent’s FPV features together

with their own’s to capture the joint task execution progress for learning and inference; these

variants are denoted as M-SF (FPV) and M-LFB (FPV) For comparison, we also use the

concatenation of the FPV feature and primary TPV feature as the input; the corresponding

models are denoted as M-SF (TPV) and M-LFB (TPV).

Implementation Details: For the LFB model, we use a history window size of 10 and

aggregate the features using max-pooling, as described in [WFF19]. For the multi-agent

variants, we use max-pooling to fuse features of two views and process them with a different

branch as another temporal inference module. We train models on a single Titan Xp GPU

for 50 epochs with a learning rate of 0.001.

Results and Discussion: Table 5.7 shows quantitative results of action and task antici-

pation. The proposed multi-agent variants (M-) of baseline models perform the best among
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Table 5.7: Comparisons of the action and task anticipations on LEMMA.

Scenario Method
1ˆ 1 1ˆ 2 2ˆ 1 2ˆ 2

Avg.Prec Avg.Rec Avg.F1 Avg.Prec Avg.Rec Avg.F1 Avg.Prec Avg.Rec Avg.F1 Avg.Prec Avg.Rec Avg.F1

C
om

p
os

it
io

n
al

ac
ti

on

SF 23.42 22.25 22.82 20.13 20.06 20.10 18.89 19.22 19.05 18.31 16.67 17.45
LFB 23.03 28.67 25.54 20.48 25.4 22.67 18.31 22.30 20.11 18.53 20.97 19.68

M-SF (TPV) 24.22 28.05 25.99 20.10 24.48 22.08 19.15 16.71 17.85 19.64 15.18 17.12
M-LFB (TPV) 23.54 37.81 29.01 21.10 31.86 25.39 19.67 21.03 20.33 20.11 20.30 20.15
M-SF (FPV) 23.30 25.41 24.31 21.34 23.18 22.22 19.70 17.46 18.51 19.82 15.8 17.58

M-LFB (FPV) 23.26 31.07 26.60 20.78 27.40 23.63 19.42 21.73 20.51 19.49 20.12 19.8

T
as

k

SF 50.53 79.08 61.66 48.07 67.78 56.25 39.05 57.43 46.49 44.88 62.09 52.1
LFB 57.57 84.31 68.42 52.12 68.94 59.36 38.40 53.08 44.56 48.17 64.61 55.19

M-SF (TPV) 58.61 79.96 67.05 55.45 67.24 60.78 45.73 58.98 51.51 49.66 64.47 56.10
M-LFB (TPV) 60.27 82.19 69.54 56.2 72.46 63.30 43.94 61.41 51.23 48.85 67.48 56.67
M-SF (FPV) 51.12 79.18 62.13 48.42 69.04 56.92 41.00 58.11 48.08 46.04 65.97 54.24

M-LFB (FPV) 55.56 82.83 66.51 52.22 70.01 59.82 41.33 64.49 50.38 46.65 69.59 55.86

all models. For single-agent activities (1 ˆ 1, 1 ˆ 2), we have the following crucial obser-

vations. First, models that consider temporal relations between frames generally perform

better than the models using segment features. Second, adding additional TPV features to

single-agent activities slightly helps interpret the task being executed and therefore promotes

anticipation. This result matches the intuition that computational models having access to

both FPVs and TPVs would perceive more holistic scene information. We also find that the

performances of task anticipation in the 1ˆ 1 single-task scenario are better than the one in

the 1 ˆ 2 multi-task scenario, matching what we would expect from more complicated task

execution patterns.

For multi-agent activities (2 ˆ 1, 2 ˆ 2), we observe that the aggregation of FPV and

TPV features generally performs better. It supports our hypothesis that observing the

other agents’ actions helps the computational models to “understand” task scheduling and

assignment. We also observe that, models’ performances in 2ˆ1 activities are slightly worse

than in 2 ˆ 2 activities. We hypothesize that task plans in the 2 ˆ 2 scenarios change less

frequently, with a clear task assignment coordinates the individual tasks. In comparison, in

the 2ˆ1 scenarios, the sequential ordering of the task requires more frequent communications

between agents to coordinate. Such a performance gap calls for better modeling of multi-

agent task assignments.
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5.2.6 Conclusions

In this paper, we introduce the LEMMA dataset with a focus on natural multi-agent multi-

task daily activities. Dense annotations are provided on both compositional action and task

for learning and inference on four different activity scenarios with increasing difficulty. Ad-

ditionally, we propose two challenging tasks on LEMMA to measure existing models’ compe-

tence in action understanding and temporal reasoning: (i) compositional action recognition,

and (ii) action/task anticipations. We hope this effort would attract the computer vision

community to look into natural and realistic goal-directed human activities and further study

the task scheduling and assignment in real-world scenarios.
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Part III

Learning and Reasoning: Human-like

Representation and Concept Learning

155



CHAPTER 6

Neural-Symbolic Learning and Reasoning

The goal of neural-symbolic computation is to integrate the connectionist and symbolist

paradigms. It naturally bridges the perception and reasoning systems with flexibility between

implicit and explicit computation, boosting performance and interpretability on many visual

reasoning tasks. In this chapter, we introduce two neural-symbolic approaches that can

efficiently learn and reason [LHH20b, LHH20a]. Specifically, Section 6.1 mimics humans’

learning curriculum in concept learning and Section 6.2 closes the loop of neural-symbolic

learning by integrating a grammar parsing module. .

6.1 Visual Concept Learning with Competence-aware Curriculum

In this section, we propose a competence-aware curriculum for visual concept learning in a

question-answering manner, to mimic humans’ ability in progressively learning visual con-

cepts from easy to hard questions. Specifically, we design a neural-symbolic concept learner

for learning the visual concepts and a multi-dimensional Item Response Theory (mIRT)

model for guiding the learning process with an adaptive curriculum. The mIRT effectively

estimates the concept difficulty and the model competence at each learning step from ac-

cumulated model responses. The estimated concept difficulty and model competence are

further utilized to select the most profitable training samples. Experimental results on

CLEVR show that with a competence-aware curriculum, the proposed method achieves

state-of-the-art performances with superior data efficiency and convergence speed. Specif-

ically, the proposed model only uses 40% of training data and converges three times

faster compared with other state-of-the-art methods.
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I. Learn basic unary concepts by contrastive examples.
Q: What is the color of the object?
A: red
Q: What is the shape of the object?
A: cube

Q: What is the color of the object?
A: green
Q: What is the shape of the object?
A: cube

II. Learn new unary/binary concepts by referential expressions.
Q: What is the shape of the red object?
A: sphere
Q: How many objects are right of the red object?
A: 2

III. Learn complex composition of multiple learned concepts.
Q: What color is the rubber ball in front of the 
metal cube to the left of the matte cube left of 
the blue metallic sphere?
A: gray

Figure 6.1: The incremental learning of visual concepts in a question-answering manner.
Three difficulty levels can be categorized into I) unary concepts from simple questions, II)
binary (relational) concepts based on the learned concepts, and III) compositions of visual
concepts from comprehensive questions.

6.1.1 Introduction

Humans excel at learning visual concepts and their compositions in a question-answering

manner [FAS10, CKA15, GLT18, ZCN17, ZRH20], which requires a joint understanding of

vision and language. The essence of such learning skill is the superior capability to con-

nect linguistic symbols (words/phrases) in question-answer pairs with visual cues (appear-

ance/geometry) in images. Imagine a person without prior knowledge of colors is presented

with two contrastive examples in Figure 6.1-I. The left images are the same except for color,

and the right question-answer pairs differ only in the descriptions about color. By assuming

that the differences in the question-answer pairs capture the differences in appearances, he

can learn the concept of color and the appearance of specific colors (i.e., red and green). Be-

sides learning the basic unary concepts from contrastive examples, compositional relations

from complex questions consisting of multiple concepts can be further learned, as shown in

Figure 6.1-II and -III.

Another crucial characteristic of the human learning process is to start small and learn

incrementally. More specifically, the human learning process is well-organized with a cur-

riculum that introduces concepts progressively and facilitates the learning of new abstract

knowledge by exploiting learned concepts. A good curriculum serves as an experienced

teacher. By ranking and selecting examples according to the learning state, it can guide the

training process of the learner (student) and significantly increase the learning speed. This
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idea is originally examined in animal training as shaping [Ski58, Pet04, KD09] and then ap-

plied to machine learning as curriculum learning [Elm93, BLC09, GBM17, GHZ18, PSL14].

Inspired by the efficient curriculum, Mao et al. [MGK19] proposes a neural-symbolic

approach to learn visual concepts with a fixed curriculum. Their approach learns from image-

question-answer triplets and does not require annotation on images or programs generated

from questions. The model is trained with a manually-designed curriculum that includes

four stages: (1) learning unary visual concepts; (2) learning relational concepts; (3) learning

more complex questions with visual perception fixed; (4) joint fine-tuning all modules. They

select questions for each stage by the depths of the latent programs. Their curriculum heavily

relies on the manually-designed heuristic that measures the question difficulty and discretizes

the curriculum. Such heuristic suffers from three limitations. First, it ignores the variance

of difficulties for questions with the same program depths, where different concepts might

have various difficulties. Second, the manually-designed curriculum relies on strong human

prior knowledge for the difficulties, while such prior may conflict with the inherent difficulty

distribution of the training examples. Last but most importantly, it neglects the progress

of the learner that evolves along with the training process. More specifically, the order of

training samples in the curriculum is nonadjustable based on the model state. This scheme

is in stark contrast to the way that humans learn – by actively selecting learning samples

based on our current learning state, instead of passively accepting specific training samples.

A desirable learning system should be capable of automatically adjusting the curriculum

during the learning process without requiring any prior knowledge, which makes the learning

procedure more efficient with less data redundancy and faster convergence speed.

To address these issues and mimic human ability in adaptive learning, we propose a

competence-aware curriculum for visual concept learning via question answering, where

competence represents the capability of the model to recognize each concept. The proposed

approach utilizes multi-dimensional Item Response Theory (mIRT) to estimate the con-

cept difficulty and model competence at each learning step from accumulated model

responses. Item Response Theory (IRT) [Bak01, BK04] is a widely adopted method in psy-

chometrics that estimates the human ability and the item difficulty from human responses
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on various items. We extend the IRT to a mIRT that matches the compositional nature of

visual reasoning, and apply variational inference to get a Bayesian estimation for the pa-

rameters in mIRT. Based on the estimations of concept difficulty and model competence,

we further define a continuous adaptive curriculum (instead of a discretized fixed regime)

that selects the most profitable training samples according to the current learning state.

More specifically, the learner can filter out samples with either too naive or too challenging

questions. These questions bring either negligible or sharp gradients to the learner, which

makes it slower and harder to converge.

With the proposed competence-aware curriculum, the learner can address the aforemen-

tioned limitations brought by a fixed curriculum with the following advantages:

1. The concept difficulty and the model competence at each learning step can be inferred

effectively from accumulated model responses. It enables the model to distinguish

difficulties among various concepts and be aware of its own capability for recognizing

these concepts.

2. The question difficulty can be calculated with the estimated concept difficulty and

model competence without requiring any heuristics.

3. The adaptive curriculum significantly contributes to the improvement of learning effi-

ciency by relieving the data redundancy and accelerating the convergence, as well as

the improvement of the final performance.

We explore the proposed method on the CLEVR dataset [JHM17a], an artificial universe

where visual concepts are clearly defined and less correlated. We opt for this synthetic

environment because there is little prior work on curriculum learning for visual concepts

and there lacks a clear definition of visual concepts in real-world setting. CLEVR allows

us to perform controllable diagnoses of the proposed mIRT model in building an adaptive

curriculum. Section 6.1.5 further discusses the potentials and challenges of generalizing our

method to other domains such as real-world images and natural language processing.
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Experimental results show that the visual concept learner with the proposed competence-

aware curriculum converges three times faster and consumes only 40% of the training data

while achieving similar or even higher accuracy compared with other state-of-the-art models.

We also evaluate individual modules in the proposed method and demonstrate their efficacy

in Section 6.1.4.

6.1.2 Related Work

6.1.2.1 Neural-symbolic Visual Question Answering

Visual question answering (VQA) [MF14, TML14, QWL15, JHM17a, GLL17] is a popular

task for gauging the capability of visual reasoning systems. Some recent studies [ARD15,

ARD16, HAR17, JHM17c, YGL20] focus on learning the neural module networks (NMNs)

on the CLEVR dataset. NMNs translate questions into programs, which are further exe-

cuted over image features to predict answers. The program generator is typically trained on

human annotations. Several recent works target on reducing the supervision or increasing

the generalization ability to new tasks in NMNs. For example, Johnson et al. [JHM17c] re-

places the hand-designed syntactic parsers by a learned program generator. Neural-Symbolic

VQA [YWG18] explores an object-based visual representation and uses a symbolic executor

for inferring the answer. Neural-symbolic concept learner [MGK19] uses a symbolic rea-

soning process and manually-defined curriculum to bridge the learning of visual concepts,

words, and the parsing of questions without explicit annotations. In this work, we build our

model on the neural-symbolic concept learner [MGK19] and learn an adaptive curriculum to

select the most profitable training samples.

Learning-by-asking (LBA) [MGF17] proposes an interactive learning framework that al-

lows the model to actively query an oracle and discover an easy-to-hard curriculum. LBA

uses the expected accuracy improvement over candidate answers as an informativeness mea-

sure to pick questions. However, it is costly to compute the expected accuracy improvement

for sampled questions since it requires to process all the questions and images through a

VQA model. Moreover, the expected accuracy improvement cannot help to learn which
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specific component of the question contributes to the performance, especially while learning

from the answers with little information such as “yes/no”. In contrast, we select questions

by explicitly modeling the difficulty of visual concepts, combined with model competence to

infer the difficulty of each question.

6.1.2.2 Curriculum Learning and Machine Teaching

The competence-aware curriculum in our work is related to curriculum learning [BLC09,

SAJ10, TFL16, GBM17, Sac16, PSL14, GHZ18, PSN19] and machine teaching [Zhu15,

ZSZ18, LDH17, DHP19, MCV19, Fan18, Wu18]. Curriculum learning is firstly proposed

by Bengio et al. [BLC09] and demonstrates that a dataset order from easy instances to hard

ones benefits learning process. The measures of hardness in curriculum learning approaches

are usually determined by hand-designed heuristics [SAJ10, TFL16, Sac16, MGK19]. Graves

et al. [GBM17] explore learning signals based on the increase rates in prediction accuracy

and network complexity to adjust data distributions along with training. Self-paced learn-

ing [Kum10, Jia14, Jia15, Sac16] quantifies the sample hardness by the training loss and

formulates curriculum learning as an optimization problem by jointly modeling the sample

selection and the learning objective. These hand-designed heuristics are usually task-specific

without any generalization ability to other domains.

Machine teaching [Zhu15, ZSZ18, LDH17] introduces a teacher model that receives feed-

back from the student model and guides the learning of the student model accordingly. Zhu

et al. [Zhu15, ZSZ18] assume that the teacher knows the ground-truth model (i.e., the Oracle)

beforehand and constructs a minimal training set for the student model. The recent works

learning to teach [Fan18, Wu18] break this strong assumption of the existence of the oracle

model and endow the teacher with the capability of learning to teach via a reinforcement

learning framework.

Our work explores curriculum learning in visual reasoning, which is highly compositional

and more complex than tasks studied before. Different from previous works, our method

requires neither hand-designed heuristics nor an extra teacher model. We combine the idea
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Figure 6.2: The overview of the proposed approach. We use neural symbolic reasoning as
a bridge to jointly learn concept embeddings and question parsing. The model responses in
the training process are accumulated to estimate concept difficulty and model competence at
each learning step with mIRT. The estimations help to select appropriate training samples
for the current model. In the response matrix,‘X’ or ‘5’ denotes that the snapshot predicts
a correct or wrong answer, and ‘?’ means the snapshot has no response to this question.

of competence with curriculum learning and propose a novel mIRT model that estimates the

concept difficulty and model competence from accumulated model responses.

6.1.3 Methodology

In this section, we will discuss the proposed competence-aware curriculum for visual concept

learning, as also shown in Figure 6.2. We first describe a neural-symbolic approach to learn

visual concepts from image-question-answer triplets. Next, we introduce the background of

IRT model and discuss how we derive a mIRT model for estimating concept difficulty and

model competence. Finally, we present how to select training samples based on the estimated

concept difficulty and model competence to make the training process more efficient.
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6.1.3.1 Neural-Symbolic Concept Learner

We briefly describe the neural-symbolic concept learner. It uses a symbolic reasoning process

to bridge the learning of visual concepts and the semantic parsing of textual questions

without any intermediate annotations except for the final answers. We refer readers to

[MGK19, YWG18] for more details on this model.

Scene Parsing. A scene parsing module develops an object-based representation for each

image. Concretely, we adopt a pre-trained Mask R-CNN [HGD17] to generate object pro-

posals from the image. The detected bounding boxes with the original image are sent to a

ResNet-34 [HZR16] to extract the object-based features.

Concept Embeddings. By assuming each visual attribute (e.g., shape) contains a set

of visual concepts (e.g., cylinder), the extracted visual features are embedded into concept

spaces by learnable neural operators of the attributes.

Question Parsing. The question parsing module translates a question in natural language

into an executable program in a domain-specific language designed for VQA. The question

parser generates the latent program from a question in a sequence-to-sequence manner. A

bi-directional LSTM is used to encode the input question into a fixed-length representation.

The decoder is an attention-based LSTM, which produces the operations in the program

step-by-step. Some operations take concepts as their parameters, such as Filter[Cube] and

Relate[Left]. These concepts are selected from the concepts appearing in the question by the

attention mechanism.

Symbolic Reasoning. Given the latent program, the symbolic executor runs the operations

in the program with the object-based image representation to derive an answer for the input

question. The execution is fully differentiable with respect to the concept embeddings since

the intermediate results are represented in a probabilistic manner. Specifically, we keep

an attention mask on all object proposals, with each element in the mask denoting the

probability that the corresponding object contains certain concepts. The attention mask is

fed into the next operation, and the execution continues. The final operation predicts an

answer to the question.
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Joint Optimizing. We formulate the problem of jointly learning the question parser and the

concept embeddings without the annotated programs. Suppose we have a training sample

consisting of image I, question Q, and answer A, and we do not observe the latent program

l. The goal of training the whole system is to maximize the following conditional probability:

ppA|I,Qq “ El„ppl|Qq rppA|l, Iqs, (6.1)

where ppl|Qq is parametrized by the question parser with the parameters θl and ppA|l, Iq

is parametrized by the concept embeddings θe (there are no learnable parameters in the

symbolic reasoning module). Considering the expectation over the program space in Equa-

tion (6.1) is intractable, we approximate the expectation with Monte Carlo sampling. Specif-

ically, we first sample a program l̂ from the question parser ppl|Q; θlq and then apply l̂ to

obtain a probability distribution over possible answers ppA|l̂, I; θeq.

Recalling the program execution is fully differentiable w.r.t. the concept embeddings, we

learn the concept embeddings by directly maximizing log ppA|l̂, I; θeq using gradient descent

and the gradient ∇θe log ppA|l̂, I; θeq can be calculated through back-propagation. Since the

hard selection of l̂ through Monte Carlo sampling is non-differentiable, the gradients of the

question parser cannot be computed by back-propagation. Instead we optimize the question

parser using the REINFORCE algorithm [Wil92]. The gradient of the reward function J

over the parameters of the policy is:

∇Jpθlq “ El„ppl|Q;θlq r∇ log p pl|Q; θlq ¨ rs , (6.2)

where r denotes the reward. Defining the reward as the log-probability of the correct answer

and again, we rewrite the intractable expectation with one Monte Carlo sample l̂:

∇Jpθlq “ ∇ log p
´

l̂|Q; θl

¯

¨ rlog ppA|l̂, I; θeq ´ bs, (6.3)

where b is the exponential moving average of log ppA|l̂, I; θeq, serving as a simple baseline

to reduce the variance of gradients. Therefore, the update to the question parser at each
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learning step is simply the gradient of the log-probability of choosing the program, multiplied

by the probability of the correct answer using that program.

6.1.3.2 Background of Item Response Theory (IRT)

Item response theory (IRT) [Bak01, BK04] was initially created in the fields of educational

measurement and psychometrics. It has been widely used to measure the latent abilities

of subjects (e.g., human beings, robots or AI models) based on their responses to items

(e.g., test questions) with different levels of difficulty. The core idea of IRT is that the

probability of a correct response to an item can be modeled by a mathematical function of

both individual ability and item characteristics. More formally, if we let i be an individual

and j be an item, then the probability that the individual i answers the item j correctly can

be modeled by a logistic model as:

pij “ cj `
1´ cj

1` e´ajpθi´bjq
, (6.4)

where θi is the latent ability of the individual i and aj, bj, cj are the characteristics of the item

j. The item parameters can be interpreted as changing the shape of the standard logistic

function: aj (the discrimination parameter) controls the slope of the curve; bj (the difficulty

parameter) is the ability level, it is the point on θi where the probability of a correct response

is the average of cj (min) and 1 (max), also where the slope is maximized; cj (the guessing

parameter) is the asymptotic minimum of this function, which accounts for the effects of

guessing on the probability of a correct response for a multi-choice item. Equation (6.4) is

often referred to as the three-parameter logistic (3PL) model since it has three parameters

describing the characteristics of items. We refer the readers to [Bak01, BK04, ER13] for

more background and details on IRT.

6.1.3.3 Multi-dimensional IRT using Model Responses

Traditional IRT is proposed to model the human responses to several hundred items. How-

ever, datasets used in machine learning, especially deep neural networks, often consist of
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hundreds of thousands of samples or even more. It is costly to collect human responses

for large datasets, and more importantly, human responses are not distinguishable enough

to estimate the sample difficulties since samples in machine learning datasets are usually

straightforward for humans. Lalor et al. [LWY16, LWY19] empirically shows on two NLP

tasks that IRT models can be fit using machine responses by comparing item parameters

learned from the human responses and the responses from an artificial crowd of thousands

of machine learning models.

Similarly, we propose to fit IRT models with accumulated model responses (i.e., the

predictions of model snapshots) from the training process. Considering the compositional

nature of visual reasoning, we propose a multi-dimensional IRT (mIRT) model to estimate

the concept difficulty and model competence (corresponding to the subject ability in original

IRT), from which the question difficulty can be further calculated.

Formally, we have C concepts, M model snapshots saved from all time steps, and N

questions. Let Θ “ tθicu
c“1...C
i“1..M , where θic is the i-th snapshot’s competence on the c-th

concept, and B “ tbcu
c“1...C , where bc is the difficulty of the c-th concept, Q “ tqjcu

c“1...C
j“1...N ,

where qjc is the number of the c-th concept in the j-th question and gj is the probability

of guessing the correct answer to the j-th question, Z “ tziju
j“1...N
i“1...M , where zij P t0, 1u be

the response of the i-th snapshot to the j-th question (1 if the model answers the question

correctly and 0 otherwise). The probability that the snapshot i can correctly recognize the

concept c is formulated by a logistic function:

picpθic, bcq “
1

1` e´pθic´bcq
. (6.5)

Then the probability that the snapshot i answers the question j correctly is calculated as:

ppzij “ 1|θi, Bq “ gj ` p1´ gjq
C
ź

c“1

p
qjc
ic . (6.6)
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The probability that the snapshot i answers the question j incorrectly is:

ppzij “ 0|θi, Bq “ 1´ ppzij “ 1|θi, Bq. (6.7)

The total data likelihood is:

ppZ|Θ, Bq “
M
ź

i“1

N
ź

j“1

ppzij|θi, Bq. (6.8)

This formulation is also referred to as conjunctive multi-dimensional IRT [Rec85, Rec09].

6.1.3.4 Variational Bayesian Inference for mIRT

The goal of fitting an IRT model on observed responses is to estimate the latent subject

abilities and item parameters. In traditional IRT, the item parameters are usually esti-

mated by Marginal Maximum Likelihood (MML) via an Expectation-Maximization (EM)

algorithm [BA81], where the subject ability parameters are randomly sampled from a normal

distribution and marginalized out. Once the item parameters are estimated, the subject abil-

ities are scored by maximum a posterior (MAP) estimation based on their responses to items.

However, the EM algorithm is not computational efficient on large datasets. One feasible

way for scaling up is to perform variational Bayesian inference on IRT [NNM16, LWY19].

The posterior probability of the parameters in mIRT can be written as:

ppΘ, B|Zq “ ppZ|Θ, BqppΘqppBq
ş

Θ,B
ppΘ, B,Zq

, (6.9)

where ppΘq, ppBq are the priors distribution of Θ and B. The integral over the parame-

ter space in Equation (6.9) is intractable. Therefore, we approximate it by a factorized

variational distribution on top of an independence assumption of Θ and B:

qpΘ, Bq “
M,C
ź

i“1,c“1

πθic pθicq
C
ź

c“1

πbc pbcq , (6.10)
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where πθic and πbc denote Gaussian distributions for model competences and concept difficul-

ties, respectively. We adopt the Kullback-Leibler divergence (KL-divergence) to measure the

distance of p from q, which is defined as:

DKLpq}pq :“ EqpΘ,Bq log
qpΘ, Bq

ppΘ, B|Zq
, (6.11)

where ppΘ, B|Zq is still intractable. We can further decompose the KL-divergence as:

DKLpq}pq “ EqpΘ,Bq
„

log
qpΘ, Bq

ppΘ, B,Zq
` log ppZq



. (6.12)

In other words, we also have:

log ppZq “ DKLpq}pq ´ EqpΘ,Bq log
qpΘ, Bq

ppΘ, B,Zq
(6.13)

“ DKLpq}pq ` Lpqq. (6.14)

As the log evidence log ppZq is fixed with respect to q, maximizing the final term Lpqq

minimizes the KL divergence of q from p. And since qpΘ, Bq is a parametric distribution

we can sample from, we can use Monte Carlo sampling to estimate this quantity. Since the

KL-divergence is non-negative, Lpqq is an evidence lower bound (ELBO) of log ppZq. By

maximizing the ELBO with an Adam optimizer [KB14] in Pyro [BCJ18], we can estimate

the parameters in mIRT.

6.1.3.5 Training Samples Selection Strategy

The proposed model can estimate the question difficulty for the current model competence

without looking at the ground-truth images and answers. It facilitates the active selection

for future training samples. More specifically, we can easily calculate the probability that the

model answers a given question correctly from Equation (6.5) and Equation (6.6) (without

guessing) using estimated Θ and b. This probability serves as an indicator of the question

difficulty for the learner in each stage. The higher the probability, the easier the question. To
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Algorithm 3 Competence-aware Curriculum Learning.

Initialization: the training set D “ tpIj, Qj, Ajqu
N
j“1, concept difficulty Bp0q, model

competence Θp0q, concept learner φp0q, accumulated responses Z “ tu

for t “ 1 to T do
Θptq, Bptq “ arg maxΘ,B Lpq; Θpt´1q, Bpt´1q,Zq
Dptq “ tpI,Q,Aq : LB ď ppQ; Θptq, Bptqq ď UBu
φptq,Zptq “ Trainpφpt´1q,Dptq)
Z “ Z Y Zptq

select appropriate training samples, we rank the questions and filter out the hardest questions

by setting a probability lower bound (LB) and the easiest questions by a probability upper

bound (UB). Algorithm 3 summarizes the overall training process. We will discuss the

influence of LB and UB on the learning process in Section 6.1.4.5.

6.1.4 Experiments

6.1.4.1 Experimental Setup

Dataset. We evaluate the proposed method on the CLEVR dataset [JHM17a], which con-

sists of a training set of 70k images and „700k questions, and a validation set of 15k images

and „150k questions. The proposed model selects questions from the training set during

learning, and we evaluate our model on the entire validation set.

Models. To analyze the performance of the proposed approach, We conduct experiments

by comparing with several model variants:

‚ FiLM-LBA: the best model from [MGF17].

‚ NSCL: the neural-symbolic concept learner [MGK19] without using any curriculum.

Questions are randomly sampled from the training set.

‚ NSCL-Fixed: NSCL following a manually-designed discretized curriculum.

‚ NSCL-mIRT: NSCL following a continuous curriculum built by the proposed mIRT

estimator.
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Figure 6.3: The learning curves of different model variants on the CLEVR dataset.

6.1.4.2 Training Process & Model Performance

Figure 6.3 shows the accuracies of the model variants at different timesteps on the training

set (left) and validation set (right). Notably, the proposed NSCL-mIRT converges almost

2 times faster than NSCL-Fixed and 3 times faster than NSCL (i.e., 400k v.s. 800k v.s.

1200k). Although NSCL-mIRT spends extra time to estimate the parameters of the mIRT

model, such time cost is negligible compared to other time spent in training (less than 1%).

From Table 6.1, we can see that NSCL-mIRT consistently outperforms FilM-LBA at various

iterations, which demonstrates the preeminence of mIRT in building an adaptive curriculum.

Besides, NSCL-mIRT consumes less than 300k unique questions for training when it

converges. It indicates that NSCL-mIRT saves about 60% of the training data, which largely

eases the data redundancy problems. It provides a promising direction for designing a data-

efficient curriculum and helping current data-hungry deep learning models save time and

money cost during data annotation and model training.

Moreover, NSCL-mIRT obtains even higher accuracy than NSCL and NSCL-Fixed. This

indicates that the adaptive curriculum built by the multi-dimensional IRT model not only

remarkably increases the speed of convergence and reduces the data consumption during

the training process, but also leads to better performance, which also verifies the hypothesis

made by Bengio et al. [BLC09].
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Figure 6.4: The estimated concept difficulty and model competence at the final iteration.
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Figure 6.5: (a) The estimated model competence at various iterations for different attributes.
The value for each attribute type is averaged from the visual concept it contains. (b) The
estimated concept difficulty at various iterations. The shaded area represents the variance
of the estimations.

6.1.4.3 Multi-dimensional IRT

The estimated concept difficulty and model competence after converging is shown in Fig-

ure 6.4 for studying the performance of the mIRT model. Several critical observations are:

(1) The spatial relations (i.e., left/right/front/behind) are the easiest concepts. It satisfies

our intuition since the model only needs to exploit the object positions to determine their

spatial relations without dealing with appearance. The spatial relations are learned during

the late stages since they appear more frequently in complex questions to connect multiple

concepts. (2) Colors are the most difficult concepts. The model needs to capture the subtle

differences in the appearance of objects to distinguish eight different colors. (3) The model

competence scores surpass the concept difficulty scores for all the concepts. This result
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Table 6.1: The VQA accuracy of different
models on the CLEVR validation set at var-
ious iterations. NSCL and NSCL-Fixed con-
tinue to improve with longer training steps,
which is not shown for space limit.

Models 70k 140k 280k 420k 630k 700k
FiLM-LBA [MGF17] 51.2 76.2 92.9 94.8 95.2 97.3
NSCL 43.3 43.4 43.3 43.4 44.5 44.7
NSCL-Fixed 44.1 43.9 44.0 57.2 92.4 95.9
NSCL-mIRT 53.9 73.4 97.1 98.5 98.9 99.3

Table 6.2: The accuracy of the visual at-
tributes of different models.

Model Overall Color Material Shape Size
IEP [JHM17a] 90.6 91.0 90.0 89.9 90.6
MAC [HM18] 95.9 98.0 91.4 94.4 94.2
NSCL-Fixed [MGK19] 98.7 99.0 98.7 98.1 99.1
NSCL-mIRT 99.5 99.5 99.7 99.4 99.6

Table 6.3: Comparisons of the VQA accuracy
on the CLEVR validation set with other mod-
els.

Model Overall Count
Cmp
Num.

Exist
Query
Attr.

Cmp
Attr.

Human 92.6 86.7 86.4 96.6 95.0 96.0
IEP [JHM17a] 96.9 92.7 98.7 97.1 98.1 98.9
FiLM [PSV17] 97.6 94.5 93.8 99.2 99.2 99.0
MAC [HM18] 98.9 97.2 99.4 99.5 99.3 99.5
NSCL [MGK19] 98.9 98.2 99.0 98.8 99.3 99.1
NS-VQA [YWG18] 99.8 99.7 99.9 99.9 99.8 99.8
NSCL-mIRT 99.5 98.9 99.0 99.7 99.7 99.6

Table 6.4: The VQA accuracy on CLEVR val-
idation set with different LBs and UBs in the
question selection strategy. Both LB and UB
are in log scale.

(LB,UB) 70k 140k 210k 280k 560k 770k
(-10, 0) 44.39 52.01 63.04 73.5 97.93 99.01
(-5, 0) 53.75 69.55 82.44 95.31 98.92 99.27
(-3, 0) 51.38 55.97 58.33 65.11 69.57 70.01
(-5, -0.5) 42.06 52.67 80.46 95.54 98.41 99.06
(-5, -0.75) 53.91 73.42 93.6 97.07 99.04 99.50
(-5, -1) 44.57 63.65 82.95 94.38 99.15 99.48

corresponds to the nearly perfect accuracy (ą 99%) on all questions and concepts.

Section 6.1.4.2 shows the estimation of the model competence for each attribute type at

various iterations. We can observe that model competence consistently increases throughout

the training. Section 6.1.4.2 shows the estimations of the concept difficulty at different

learning steps. As the training progresses, the estimations become more stable with smaller

variance since more model responses are accumulated.

6.1.4.4 Concept Learner

We apply the count-based concept evaluation metric proposed in [MGK19] to measure the

performance of the concept learner, which evaluates the visual concepts on synthetic ques-

tions with a single concept such as “How many red objects are there?” Table 6.2 presents the

results by comparing with several state-of-the-art methods, which includes methods based

on neural module network with programs (IEP [JHM17a]) and neural attentions without

programs (MAC [HAR17]). Our model achieves nearly perfect performance across visual

concepts and outperforms all other approaches. This means the model can learn visual
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concepts better with an adaptive curriculum. Our model can also be applied to the VQA.

Table 6.3 summarizes the VQA accuracy on the CLEVR validation split. Our approach

achieves comparable performance with state-of-the-art methods.

6.1.4.5 Question Selection strategy

The question selection strategy is controlled by two hyper-parameters: the lower bound (LB)

and upper bound (UB). We conduct experiments by learning with different LBs and UBs,

and Table 6.4 shows the VQA accuracy at various iterations. It reveals that the proper lower

bound can effectively filter out too hard questions and accelerate the learning at the early

stage of the training, as shown in the first three rows. Similarly, a proper upper bound helps

to filter out too easy questions at the late stage of the training when the model has learned

most concepts.

6.1.5 Conclusions and Discussions

We propose a competence-aware curriculum for visual concepts learning via question an-

swering. We design a multi-dimensional IRT model to estimate concept difficulty and model

competence at each training step from the accumulated model responses generated by dif-

ferent model snapshots. The estimated concept difficulty and model competence are further

used to build an adaptive curriculum for the visual concept learner. Experiments on the

CLEVR dataset show that the concept learner with the proposed competence-aware cur-

riculum converges three times faster and consumes only 40% of the training data while

achieving similar or even higher accuracy compared with other state-of-the-art models.

In the future, our work can be potentially applied to real-world images like GQA [HM19]

and VQA-v2 [GKS17] datasets, by explicitly modeling the relationship among visual con-

cepts. However, there are still unsolved challenges for real-world images. Specifically, com-

pared with synthetic images in CLEVR, real-world images have a much larger vocabulary

of visual concepts. For example, as shown in [AHB18], there are over 2,000 visual concepts

in MSCOCO images. Usually, these concepts are automatically mined from image captions
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and scene graphs. Thus some of them are highly correlated like “huge” and “large”, and

some of them are very subjective like “busy” and “calm”. Such a large and noisy vocabulary

of visual concepts is challenging for the mIRT model since current visual concepts are as-

sumed to be independent. It also requires a much longer time to converge when maximizing

the ELBO to fit the mIRT model with more concepts. A potential solution is to consider

the hierarchical structure of visual concept space and correlations among the concepts and

incorporate commonsense knowledge to handle subjective concepts.

More importantly, the competence-aware curriculum can be adapted to other domains

that possess compositional structures such as natural language processing. Specifically, in

neural machine translation task [SVL14, BCB15], mIRT can be used to model the difficulty

and competence of translating different words/phrases and build a curriculum to increase

learning speed and data efficiency. mIRT can also be used in the task of semantic pars-

ing [DL16, LBL16a, LNB18a] that transforms natural language sentences (e.g., instructions

or queries) into logic forms (e.g., lambda-calculus or SQL). The difficulty and competence

of different logic predicates can also be estimated by the mIRT model.
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6.2 Close-loop Neural-symbolic Learning with Grammar Model

The goal of neural-symbolic computation is to integrate the connectionist and symbolist

paradigms. Prior methods learn the neural-symbolic models using reinforcement learning

(RL) approaches, which ignore the error propagation in the symbolic reasoning module and

thus converge slowly with sparse rewards.

In this section, we address these issues and close the loop of neural-symbolic learning by

(1) introducing the grammar model as a symbolic prior to bridge neural perception and

symbolic reasoning, and (2) proposing a novel back-search algorithm which mimics the top-

down human-like learning procedure to propagate the error through the symbolic reasoning

module efficiently. We further interpret the proposed learning framework as maximum like-

lihood estimation using Markov chain Monte Carlo sampling and the back-search algorithm

as a Metropolis-Hastings sampler. The experiments are conducted on two weakly-supervised

neural-symbolic tasks: (1) handwritten formula recognition on the newly introduced HWF

dataset; (2) visual question answering on the CLEVR dataset. The results show that our

approach significantly outperforms the RL methods in terms of performance, converging

speed, and data efficiency.

6.2.1 Introduction

Integrating robust connectionist learning and sound symbolic reasoning is a key challenge

in modern Artificial Intelligence. Deep neural networks [LBH15, LB95, HS97] provide us

powerful and flexible representation learning that has achieved state-of-the-art performances

across a variety of AI tasks such as image classification [KSH12, SLJ15, HZR16], machine

translation [SVL14], and speech recognition [GMH13]. However, it turns out that many

aspects of human cognition, such as systematic compositionality and generalization [FP88,

Mar98, FL02, CS14, Mar18, LB18], cannot be captured by neural networks. On the other

hand, symbolic reasoning supports strong abstraction and generalization but is fragile and

inflexible. Consequently, many methods have focused on building neural-symbolic models

to combine the best of deep representation learning and symbolic reasoning [Sun94, GLG08,
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Figure 6.6: Comparison between the original neural-symbolic model learned by REINFORCE
(NS-RL) and the proposed neural-grammar-symbolic model learned by back-search (NGS-
BS). In NS-RL, the neural network predicts an invalid formula, causing a failure in the
symbolic reasoning module. There is no backward pass in this example since it generates
zero reward. In contrast, NGS-BS predicts a valid formula and searches a correction for its
prediction. The neural network is updated using this correction as the pseudo label.

BGH09, BGB17b, YWG18].

Recently, this neural-symbolic paradigm has been extensively explored in the tasks of

the visual question answering (VQA) [YWG18, VDL19, MGK19], vision-language naviga-

tion [AWT18, FHC18], embodied question answering [DDG18, DGL18], and semantic parsing

[LBL16b, YZH18], often with weak supervision. Concretely, for these tasks, neural networks

are used to map raw signals (images/questions/instructions) to symbolic representations

(scenes/programs/actions), which are then used to perform symbolic reasoning/execution to

generate final outputs. Weak supervision in these tasks usually provides pairs of raw inputs

and final outputs, with intermediate symbolic representations unobserved. Since symbolic

reasoning is non-differentiable, previous methods usually learn the neural-symbolic models by

policy gradient methods like REINFORCE. The policy gradient methods generate samples

and update the policy based on the generated samples that happen to hit high cumulative
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rewards. No efforts are made to improve each generated sample to increase its cumulative

reward. Thus the learning has been proved to be time-consuming because it requires gener-

ating a large number of samples over a large latent space of symbolic representations with

sparse rewards, in the hope that some samples may be lucky enough to hit high rewards so

that such lucky samples can be utilized for updating the policy. As a result, policy gradients

methods converge slowly or even fail to converge without pre-training the neural networks

on fully-supervised data.

To model the recursive compositionality in a sequence of symbols, we introduce the gram-

mar model to bridge neural perception and symbolic reasoning. The structured symbolic

representation often exhibits compositional and recursive properties over individual symbols

in it. Correspondingly, the grammar models encode symbolic prior about composition rules,

thus can dramatically reduce the solution space by parsing the sequence of symbols into

valid sentences. For example, in the handwritten formula recognition problem, the grammar

model ensures that the predicted formula is always valid, as shown in Figure 6.6.

To make the neural-symbolic learning more efficient, we propose a novel back-search

strategy which mimics human’s ability to learn from failures via abductive reasoning [Mag09,

Zho19]. Specifically, the back-search algorithm propagates the error from the root node to

the leaf nodes in the reasoning tree and finds the most probable correction that can generate

the desired output. The correction is further used as a pseudo label for training the neural

network. Figure 6.6 shows an exemplar backward pass of the back-search algorithm. We

argue that the back-search algorithm makes a first step towards closing the learning loop by

propagating the error through the non-differentiable grammar parsing and symbolic reason-

ing modules. We also show that the proposed multi-step back-search algorithm can serve

as a Metropolis-Hastings sampler which samples the posterior distribution of the symbolic

representations in the maximum likelihood estimation in Section 6.2.3.2.

We conduct experiments on two weakly-supervised neural-symbolic tasks: (1) handwrit-

ten formula recognition on the newly introduced HWF dataset (Hand-Written Formula),

where the input image and the formula result are given during training, while the formula

is hidden; (2) visual question answering on the CLEVR dataset. The question, image, and
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answer are given, while the functional program generated by the question is hidden. The

evaluation results show that the proposed Neural-Grammar-Symbolic (NGS) model with

back-search significantly outperforms the baselines in terms of performance, convergence

speed, and data efficiency. The ablative experiments also demonstrate the efficacy of the

multi-step back-search algorithm and the incorporation of grammar in the neural-symbolic

model.

6.2.2 Related Work

Neural-symbolic Integration. Researchers have proposed to combine statistical learning

and symbolic reasoning in the AI community, with pioneer works devoted to different as-

pects including representation learning and reasoning [Sun94, GLG08, MDK18], abductive

learning [DZ17, DXY19, Zho19, HLC20, HLG20], knowledge abstraction [HOT06, BGH09],

knowledge transfer [FFG89, YCX09], etc.. Recent research shifts the focus to the appli-

cation of neural-symbolic integration, where a large amount of heterogeneous data and

knowledge descriptions are needed, such as neural-symbolic VQA [YWG18, VDL19, MGK19,

LFY18, LTJ18, LHH20b], semantic parsing in Natural Language Processing (NLP) [LBL16b,

YZH18], math word problem [LC19, LSR19] and program synthesis [EG18, KMP18, MDK18].

Different from previous methods, the proposed NGS model considers the compositionality

and recursivity in natural sequences of symbols and brings together the neural perception

and symbolic reasoning module with a grammar model.

Grammar Model. Grammar model has been adopted in various tasks for its advantage in

modeling compositional and recursive structures, like image parsing [TCY05, HZ05, ZM07,

ZZ11, FD18], video parsing [GSS09, QJZ18, QJH20], scene understanding [HQZ18, HQX18,

QZH18, JQZ18, CHY19], and task planning [XLE18]. By integrating the grammar into the

neural-symbolic task as a symbolic prior for the first time, the grammar model ensures the

desired dependencies and structures for the symbol sequence and generates valid sentences

for symbolic reasoning. Furthermore, it improves the learning efficiency significantly by

shrinking the search space with the back-search algorithm.
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Policy Gradient. Policy gradient methods like REINFORCE [Wil92] are the most com-

monly used algorithm for the neural-symbolic tasks to connect the learning gap between neu-

ral networks and symbolic reasoning [MTS18, MGK19, AKL17, DGL18, BHD18, GPL17].

However, original REINFORCE algorithm suffers from large sample estimate variance, sparse

rewards from cold start and exploitation-exploration dilemma, which lead to unstable learn-

ing dynamics and poor data efficiency. Many papers propose to tackle this problem [LBL16b,

GPL17, LNB18b, WZG18, ALS19]. Specifically, [LBL16b] uses iterative maximum likeli-

hood to find pseudo-gold symbolic representations, and then add these representations to

the REINFORCE training set. [GPL17] combines the systematic beam search employed

in maximum marginal likelihood with the greedy randomized exploration of REINFORCE.

[LNB18b] proposes Memory Augmented Policy Optimization (MAPO) to express the ex-

pected return objective as a weighted sum of an expectation over the high-reward history

trajectories, and a separate expectation over new trajectories. Although utilizing positive

representations from either beam search or past training process, these methods still cannot

learn from negative samples and thus fail to explore the solution space efficiently. On the

contrary, we propose to diagnose and correct the negative samples through the back-search

algorithm under the constraint of grammar and symbolic reasoning rules. Intuitively speak-

ing, the proposed back-search algorithm traverses around the negative sample and find a

nearby positive sample to help the training.

6.2.3 Neural-Grammar-Symbolic Model (NGS)

In this section, we will first describe the inference and learning algorithms of the proposed

neural-grammar-symbolic (NGS) model. Then we provide an interpretation of our model

based on maximum likelihood estimation (MLE) and draw the connection between the pro-

posed back-search algorithm and Metropolis-Hastings sampler. We further introduce the

task-specific designs in Section 6.2.4.
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6.2.3.1 Inference

In a neural-symbolic system, let x be the input (e.g., an image or question), z be the hidden

symbolic representation, and y be the desired output inferred by z. The proposed NGS model

combines neural perception, grammar parsing, and symbolic reasoning modules efficiently to

perform the inference.

Neural Perception. The neural network is used as a perception module which maps the

high-dimensional input x to a normalized probability distribution of the hidden symbolic

representation z:

pθpz|xq “ softmaxpφθpz, xqq (6.15)

“
exppφθpz, xqq

ř

z1 exppφθpz1, xqq
, (6.16)

where φθpz, xq is a scoring function or a negative energy function represented by a neural

network with parameters θ.

Grammar Parsing. Take z as a sequence of individual symbols: z “ pz1, z2, ..., zlq, zi P

Σ, where Σ denotes the vocabulary of possible symbols. The neural network is powerful

at modeling the mapping between x and z, but the recursive compositionality among the

individual symbols zi is not well captured. Grammar is a natural choice to tackle this

problem by modeling the compositional properties in sequence data.

Take the context-free grammar (CFG) as an example. In formal language theory, a CFG

is a type of formal grammar containing a set of production rules that describe all possible

sentences in a given formal language. Specifically, a context-free grammar G in Chomsky

Normal Form is defined by a 4-tuple G “ pV,Σ, R, Sq, where

‚ V is a finite set of non-terminal symbols that can be replaced by/expanded to a se-

quence of symbols.

‚ Σ is a finite set of terminal symbols that represent actual words in a language, which

cannot be further expanded. Here Σ is the vocabulary of possible symbols.
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‚ R is a finite set of production rules describing the replacement of symbols, typically

of the form A Ñ BC or A Ñ α, where A,B,C P V and α P Σ. A production rule

replaces the left-hand side non-terminal symbols by the right-hand side expression. For

example, AÑ BC|α means that A can be replaced by either BC or α.

‚ S P V is the start symbol.

Given a formal grammar, parsing is the process of determining whether a string of symbolic

nodes can be accepted according to the production rules in the grammar. If the string is

accepted by the grammar, the parsing process generates a parse tree. A parse tree represents

the syntactic structure of a string according to certain CFG. The root node of the tree is the

grammar root. Other non-leaf nodes correspond to non-terminals in the grammar, expanded

according to grammar production rules. The leaf nodes are terminal nodes. All the leaf nodes

together form a sentence.

In neural-symbolic tasks, the objective of parsing is to find the most probable z that can

be accepted by the grammar:

ẑ “ arg max
zPLpGq

pθpz|xq (6.17)

where LpGq denotes the language of G, i.e., the set of all valid z that accepted by G.

Traditional grammar parsers can only work on symbolic sentences. [QJZ18] proposes a

generalized version of Earley Parser, which takes a probability sequence as input and outputs

the most probable parse. We use this method to compute the best parse ẑ in Equation (6.17).

Symbolic Reasoning. Given the parsed symbolic representation ẑ, the symbolic reason-

ing module performs deterministic inference with ẑ and the domain-specific knowledge ∆.

Formally, we want to find the entailed sentence ŷ given ẑ and ∆:

ŷ : ẑ ^ ∆ |ù ŷ (6.18)
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Since the inference process is deterministic, we re-write the above equation as:

ŷ “ fpẑ; ∆q, (6.19)

where f denotes complete inference rules under the domain ∆. The inference rules generate

a reasoning path τ̂ that leads to the predicted output ŷ from ẑ and ∆. The reasoning path

τ̂ has a tree structure with the root node ŷ and the leaf nodes from ẑ or ∆.

6.2.3.2 Learning

It is challenging to obtain the ground truth of the symbolic representation z, and the rules

(i.e.grammar rules and the symbolic inference rules) are usually designed explicitly by human

knowledge. We formulate the learning process as a weakly-supervised learning of the neural

network model θ where the symbolic representation z is missing, and the grammar model

G, domain-specific language ∆, the symbolic inference rules f are given.

1-step back-search (1-BS) As shown in Figure 6.6, previous methods using policy gra-

dient to learn the model discard all the samples with zero reward and learn nothing from

them. It makes the learning process inefficient and unstable. However, humans can learn

from the wrong predictions by diagnosing and correcting the wrong answers according to the

desired outputs with top-down reasoning. Based on such observation, we propose a 1-step

back-search (1-BS) algorithm which can correct wrong samples and use the corrections as

pseudo labels for training. The 1-BS algorithm closes the learning loop since the error can

also be propagated through the non-differentiable grammar parsing and symbolic reasoning

modules. Specifically, we find the most probable correction for the wrong prediction by

back-tracking the symbolic reasoning tree and propagating the error from the root node into

the leaf nodes in a top-down manner.

The 1-BS algorithm is implemented with a priority queue as shown in Algorithm 4. The

1-BS gradually searches down the reasoning tree τ̂ starting from the root node S to the leaf

nodes. Specifically, each element in the priority queue represents a valid change, defined as
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a 3-tuple pA,αA, pq:

‚ A P V Y Σ is the current visiting node.

‚ αA is the expected value on this node, which means if the value of A is changed to αA,

ẑ will execute to the ground-truth answer y, i.e.y “ fpẑpAÑ αAq; ∆qq.

‚ p is the visiting priority, which reflects the potential of changing the value of A.

Formally, the priority for this change is defined as the probability ratio:

ppAÑ αAq “

$

&

%

1´ppAq
ppAq

, if A R Σ

ppαAq
ppAq

, if A P Σ & αA P Σ.
(6.20)

where ppAq is calculated as Equation 6.15,if A P Σ; otherwise, it is defined as the product of

the probabilities of all leaf nodes in A. If A P Σ and αA R Σ, it means we need to correct the

terminal node to a value that is not in the vocabulary. Therefore, this change is not possible

and thus should be discarded.

The error propagation through the reasoning tree is achieved by a solvepB,A, αA|∆, Gq

function, which aims at computing the expected value αB of the child node B from the

expected value αA of its parent node A, i.e., finding αB satisfying fpẑpB Ñ αBq; ∆qq “

fpẑpAÑ αAq; ∆qq “ y.

In the 1-BS, we make a greedy assumption that only one symbol can be replaced at a

time. This assumption implies only searching the neighborhood of ẑ at one-step distance. In

Section 6.2.3.2, the 1-BS is extended to the multi-step back-search algorithm, which allows

searching beyond one-step distance.

Maximum Likelihood Estimation Since z is conditioned on x and y is conditioned on

z, the likelihood for the observation px, yq marginalized over z is:

ppy|xq “
ÿ

z

ppy, z|xq “
ÿ

z

ppy|zqpθpz|xq. (6.21)
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Algorithm 4 1-step back-search (1-BS)

1: Input: ẑ, S, y
2: q “ PriorityQueuepq
3: q.pushpS, y, 1q
4: while A,αA, p “ q.poppq do
5: if A P Σ then
6: z˚ “ ẑpAÑ αAq
7: return z˚

8: for B P childpAq do
9: αB “ solvepB,A, αA|∆, Gq

10: q.pushpB,αB, ppB Ñ αBqq

11: return ∅

The learning goal is to maximize the observed-data log likelihood Lpx, yq “ log ppy|xq.

By taking derivative, the gradient for the parameter θ is given by

∇θLpx, yq “ ∇θ log ppy|xq

“
1

ppy|xq
∇θppy|xq

“
ÿ

z

ppy|zqpθpz|xq
ř

z1 ppy|z
1qpθpz1|xq

∇θ log pθpz|xq

“ Ez„ppz|x,yqr∇θ log pθpz|xqs, (6.22)

where ppz|x, yq is the posterior distribution of z given x, y. Since ppy|zq is computed by the

symbolic reasoning module and can only be 0 or 1, ppz|x, yq can be written as:

ppz|x, yq “
ppy|zqpθpz|xq

ř

z1 ppy|z
1qpθpz1|xq

“

$

&

%

0, for z R Q

pθpz|xq
ř

z1PQ pθpz
1|xq
, for z P Q

(6.23)

where Q “ tz : ppy|zq “ 1u “ tz : fpz; ∆q “ yu is the set of z that generates y. Usually Q is

a very small subset of the whole space of z.

Equation (6.23) indicates that z is sampled from the posterior distribution ppz|x, yq,

which only has non-zero probabilities on Q, instead of the whole space of z.
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Unfortunately, computing the posterior distribution is not efficient as evaluating the

normalizing constant for this distribution requires summing over all possible z, and the

computational complexity of the summation grows exponentially.

Nonetheless, it is feasible to design algorithms that sample from this distribution us-

ing Markov chain Monte Carlo (MCMC). Since z is always trapped in the modes where

ppz|x, yq “ 0, the remaining question is how we can sample the posterior distribution ppz|x, yq

efficiently to avoid redundant random walk at states with zero probabilities.

Algorithm 5 m-step back-search (m-BS)

1: Hyperparameters: T , λ
2: Input: ẑ, y
3: zp0q “ ẑ
4: for tÐ 0 to T ´ 1 do
5: z˚ “ 1-BSpzt, yq
6: draw u „ Up0, 1q
7: if u ď λ and z˚ ‰ ∅ then
8: zt`1 “ z˚

9: else
10: zt`1 “ RandomWalkpztq

11: return zT

12:

13: function RandomWalk(zt)
14: sample z˚ „ gp¨|ztq

15: compute acceptance ratio a “ minp1, pθpz
˚|xq

pθpzt|xq
q

16: draw u „ Up0, 1q

17: zt`1 “

"

z˚, if u ď a
zt, otherwise.

m-BS as Metropolis-Hastings Sampler In order to perform efficient sampling, we ex-

tend the 1-step back search to a multi-step back search (m-BS), which serves as a Metropolis-

Hastings sampler.

A Metropolis-Hastings sampler for a probability distribution πpsq is a MCMC algorithm

that makes use of a proposal distribution Qps1|sq from which it draws samples and uses an

acceptance/rejection scheme to define a transition kernel with the desired distribution πpsq.

Specifically, given the current state s, a sample s1 ‰ s drawn from Qps1|sq is accepted as the
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next state with probability

Aps, s1q “ min

"

1,
πps1qQps|s1q

πpsqQps1|sq

*

. (6.24)

Since it is impossible to jump between the states with zero probability, we define p1pz|x, yq

as a smoothing of ppz|x, yq by adding a small constant ε to ppy|zq:

p1pz|x, yq “
rppy|zq ` εspθpz|xq

ř

z1rppy|z
1q ` εspθpz1|xq

(6.25)

As shown in Algorithm 5, in each step, the m-BS proposes 1-BS search with probability

of λ (λ ă 1) and random walk with probability of 1 ´ λ. The combination of 1-BS and

random walk helps the sampler to traverse all the states with non-zero probabilities and

ensures the Markov chain to be ergodic.

Random Walk: Defining a Poisson distribution for the random walk as

gpz1|z2q “ Poissonpdpz1, z2q; βq, (6.26)

where dpz1, z2q denotes the edit distance between z1, z2, and β is equal to the expected value of

d and also to its variance. β is set as 1 in most cases due to the preference for a short-distance

random walk. The acceptance ratio for sampling a z˚ from gp¨|ztq is a “ minp1, rpzt, z˚qq,

where

rpzt, z˚q “
qpz˚qp1´ λqgpzt|z˚q

qpztqp1´ λqgpz˚|ztq

“
pθpz

˚|xq

pθpzt|xq
. (6.27)

1-BS: While proposing the z˚ with 1-BS, we search a z˚ that satisfies ppy|z˚q “ 1. If z˚
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is proposed, the acceptance ratio for is a “ minp1, rpzt, z˚qq, where

rpzptq, z˚q “
qpz˚qr0` p1´ λqgpzt|z˚qs

qpztq ¨ rλ` p1´ λqgpz˚|zptqqs
(6.28)

“
1` ε

ε
¨
pθpz

˚|xq

pθpzt|xq
¨
p1´ λqgpzt|z˚q

λ` p1´ λqgpz˚|ztq
.

qpzq “ rppy|zq ` εspθpz|xq is denoted as the numerator of p1pz|x, yq. With an enough small

ε, 1`ε
ε
" 1, rpzt, z˚q ą 1, we will always accept z˚.

Notably, the 1-BS algorithm tries to transit the current state into a state where z˚ “ 1-

BSpzt, yq, making movements in directions of increasing the posterior probability. Similar to

the gradient-based MCMCs like Langevin dynamics [DK86, WT11], this is the main reason

that the proposed method can sample the posterior efficiently.

Comparison with Policy Gradient Since grammar parsing and symbolic reasoning are

non-differentiable, most of the previous approaches for neural-symbolic learning use policy

gradient like REINFORCE to learn the neural network. Treat pθpz|xq as the policy function

and the reward given z, y can be written as:

rpz, yq “

$

&

%

0, if fpz; ∆q ‰ y.

1, if fpz; ∆q “ y.
(6.29)

The learning objective is to maximize the expected reward under current policy pθ:

Rpx, yq “ Ez„pθpz|xqqrpz, yq “
ÿ

z

pθpz|xqrpz, yq. (6.30)

Then the gradient for θ is:

∇θRpx, yq “
ÿ

z

rpz, yqpθpz|xq∇θ log pθpz|xq

“ Ez„pθpz|xqqrrpz, yq∇θ log pθpz|xqs. (6.31)

We can approximate the expectation using one sample at each time, and then we get the
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REINFORCE algorithm:

∇θ “ rpz, yq∇θ log pθpz|xq, z „ pθpz|xq

“

$

&

%

0, if fpz; ∆q ‰ y.

∇θ log pθpz|xq, if fpz; ∆q “ y.
(6.32)

Equation (6.32) reveals the gradient is non-zero only when the sampled z satisfies fpz; ∆q “

y. However, among the whole space of z, only a very small portion can generate the desired

y, which implies that the REINFORCE will get zero gradients from most of the samples.

This is why the REINFORCE method converges slowly or even fail to converge, as also

shown from the experiments in Section 6.2.4.

6.2.4 Experiments and Results

6.2.4.1 Handwritten Formula Recognition

Task definition. The handwritten formula recognition task tries to recognize each math-

ematical symbol given a raw image of the handwritten formula. We learn this task in a

weakly-supervised manner, where raw image of the handwritten formula is given as input

data x, and the computed results of the formulas is treated as outputs y. The symbolic

representation z that represent the ground-truth formula composed by individual symbols

is hidden. Our task is to predict the formula, which could further be executed to calculate

the final result.

HWF Dataset. We generate the HWF dataset based on the CROHME 2019 Offline

Handwritten Formula Recognition Task1. First, we extract all symbols from CROHME and

only keep ten digits (0„9) and four basic operators (`,´,ˆ, ˜). Then we generate formulas

by sampling from a pre-defined grammar that only considers arithmetic operations over

single-digit numbers. For each formula, we randomly select symbol images from CROHME.

Overall, our dataset contains 10K training formulas and 2K test formulas.

1https://www.cs.rit.edu/~crohme2019/task.html
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Evaluation Metrics. We report both the calculation accuracy (i.e.whether the calcu-

lation of predicted formula yields to the correct result) and the symbol recognition accuracy

(i.e.whether each symbol is recognized correctly from the image) on the synthetic dataset.

Models. In this task, we use LeNet [LeC15] as the neural perception module to process

the handwritten formula. Before feeding into LeNet, the original image of an formula is

pre-segmented into a sequence of sub-images, and each sub-image contains only one symbol.

The symbolic reasoning module works like a calculator, and each inference step computes

the parent value given the values of two child nodes (left/right) and the operator. The

solvepB,A, αAq function in 1-step back-search algorithm works in the following way for

mathematical formulas:

‚ If B is A’s left or right child, we directly solve the equation αB
À

childRpAq “ αA or

childLpAq
À

αB “ αA to get αB, where
À

denotes the operator.

‚ If B is an operator node, we try all other operators and check whether the new formula

can generate the correct result.

We conduct experiments by comparing the following variants of the proposed model:

‚ NGS-RL: learning the NGS model with REINFORCE.

‚ NGS-MAPO: learning the NGS model by Memory Augmented Policy Optimization

(MAPO) [LNB18b], which leverages a memory buffer of rewarding samples to reduce

the variance of policy gradient estimates.

‚ NGS-RL-Pretrain: NGS-RL with LeNet pre-trained on a small set of fully-supervised

data.

‚ NGS-MAPO-Pretrain: NGS-MAPO with pre-trained LeNet.

‚ NGS-m-BS: learning the NGS model with the proposed m-step back-search algorithm.

Learning Curve. Figure 6.7 shows the learning curves of different models. The proposed

NGS-m-BS converges much faster and achieves higher accuracy compared with other models.

189



Figure 6.7: The learning curves of the calculation accuracy and the symbol recognition
accuracy for different models.

Figure 6.8: The training curves of NGS-m-BS with different steps.

NGS-RL fails without pre-training and rarely improves during the entire training process.

NGS-MAPO can learn the model without pre-training, but it takes a long time to start

efficient learning, which indicates that MAPO suffers from the cold-start problem and needs

time to accumulate rewarding samples. Pre-training the LeNet solves the cold start problem

for NGS-RL and NGS-MAPO. However, the training curves for these two models are quite

noisy and are hard to converge even after 100k iterations. Our NGS-m-BS model learns from

scratch and avoids the cold-start problem. It converges quickly with nearly perfect accuracy,

with a much smoother training curve than the RL baselines.

Back-Search Step. Figure 6.8 illustrates the comparison of the various number of

steps in the multi-step back-search algorithm. Generally, increasing the number of steps will

increase the chances of correcting wrong samples, thus making the model converge faster.
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Figure 6.9: Examples of correcting wrong predictions using the one-step back-search algo-
rithm.

However, increasing the number of steps will also increase the time consumption of each

iteration.

Data Efficiency. Table 6.5 and Table 6.6 show the accuracies on the test set while using

various percentage of training data. All models are trained with 15K iterations. It turns out

the NGS-m-BS is much more data-efficient than the RL methods. Specifically, when only

using 25% of the training data, NGS-m-BS can get a calculation accuracy of 93.3%, while

NGS-MAPO only gets 5.1%.

Table 6.5: The calculation accuracy on the test set using various percentage of training data.

Model 25% 50 % 75 % 100%

NGS-RL 0.035 0.036 0.034 0.034
NGS-MAPO 0.051 0.095 0.305 0.717
NGS-RL-Pretrain 0.534 0.621 0.663 0.685
NGS-MAPO-Pretrain 0.687 0.773 0.893 0.956

NGS-m-BS 0.933 0.957 0.975 0.985

Table 6.6: The symbol recognition accuracy on the test set using various percentage of
training data.

Model 25% 50 % 75 % 100%

NGS-RL 0.170 0.170 0.170 0.170
NGS-MAPO 0.316 0.481 0.785 0.967
NGS-RL-Pretrain 0.916 0.945 0.959 0.964
NGS-MAPO-Pretrain 0.962 0.983 0.985 0.991

NGS-m-BS 0.988 0.992 0.995 0.997

Qualitative Results. Figure 6.9 illustrates four examples of correcting the wrong pre-
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dictions with 1-BS. In the first two examples, the back-search algorithm successfully corrects

the wrong predictions by changing a digit and an operator, respectively. In the third exam-

ple, the back-search fails to correct the wrong sample. However, if we increase the number of

search steps, the model could find a correction for the example. In the fourth example, the

back-search finds a spurious correction, which is not the same as the ground-truth formula

but generates the same result. Such spurious correction brings a noisy gradient to the neural

network update. It remains an open problem for how to avoid similar spurious corrections.

6.2.4.2 Neural-Symbolic Visual Question Answering

Task. Following [YWG18], the neural-symbolic visual question answering task tries to parse

the question into functional program and then use a program executor that runs the program

on the structural scene representation to obtain the answer. The functional program is

hidden.

Dataset. We evaluate the proposed method on the CLEVR dataset [JHM17a]. The CLEVR

dataset is a popular benchmark for testing compositional reasoning capability of VQA models

in previous works [JHV17, VDL19]. CLEVR consists of a training set of 70K images and

„700K questions, and a validation set of 15K images and „150K questions. We use the

VQA accuracy as the evaluation metric.

Models. We adopt the NS-VQA model in [YWG18] and replace the attention-based seq2seq

question parser with a Pointer Network [VFJ15]. We store a dictionary to map the keywords

in each question to the corresponding functional modules. For example, “red”Ñ“filter color

[red]”, “how many”Ñ “count”, and “what size” Ñ “query size” etc. Therefore, the Pointer

Network can point to the functional modules that are related to the input question. The

grammar model ensures that the generated sequence of function modules can form a valid

program, which indicates the inputs and outputs of these modules can be strictly matched

with their forms. We conduct experiments by comparing following models: NS-RL, NGS-

RL, NGS-1-BS, NGS-m-BS.

Learning Curve. Figure 6.10 shows the learning curves of different model variants. NGS-
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BS converges much faster and achieves higher VQA accuracy on the test set compared with

the RL baselines. Though taking a long time, NGS-RL does converge, while NS-RL fails.

This fact indicates that the grammar model plays a critical role in this task. Conceivably, the

latent functional program space is combinatory, but the grammar model rules out all invalid

programs that cannot be executed by the symbolic reasoning module. It largely reduces the

solution space in this task.

Figure 6.10: The learning curve of different model variants on training and validation set of
the CLEVR dataset.

Back-Search Step. As shown in Figure 6.10, NGS-10-BS performs slightly better than

the NGS-1-BS, which indicates that searching multiple steps does not help greatly in this

task. One possible reason is that there are more ambiguities and more spurious examples

compared with the handwritten formula recognition task, making it less efficient to do the

m-BS. For example, for the answer “yes”, there might be many possible programs for this

question that can generate the same answer given the image.
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Data Efficiency Table 6.7 shows the accuracies on the CLEVR validation set when different

portions of training data are used. With less training data, the performances decrease for

both NGS-RL and NGS-m-BS, but NGS-m-BS still consistently obtains higher accuracies.

Table 6.7: The VQA accuracy on the CLEVR validation set using different percentage of
training data. All models are trained 30k iterations.

Model 25% 50 % 75 % 100%
NS-RL 0.090 0.091 0.099 0.125
NGS-RL 0.678 0.839 0.905 0.969
NGS-m-BS 0.873 0.936 1.000 1.000

6.2.5 Conclusions

In this work, we propose a neural-grammar-symbolic model and a back-search algorithm

to close the loop of neural-symbolic learning. We demonstrate that the grammar model

can dramatically reduce the solution space by eliminating invalid possibilities in the latent

representation space. The back-search algorithm endows the NGS model with the capability

of learning from wrong samples, making the learning more stable and efficient. One future

direction is to learn the symbolic prior (i.e.the grammar rules and symbolic inference rules)

automatically from the data.
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CHAPTER 7

Systematic Generalization of Perception, Syntax, and

Semantics

Inspired by humans’ remarkable ability to master arithmetic and generalize to unseen prob-

lems, we present a new dataset, Hint, to study machines’ capability of learning generalizable

concepts at three different levels: perception, syntax, and semantics. In particular, concepts

in Hint, including both digits and operators, are required to learn in a weakly-supervised

fashion: Only the final results of handwriting expressions are provided as supervision. Learn-

ing agents need to reckon how concepts are perceived from raw signals such as images (i.e.,

perception), how multiple concepts are structurally combined to form a valid expression (i.e.,

syntax), and how concepts are realized to afford various reasoning tasks (i.e., semantics).

With a focus on systematic generalization, we carefully design a five-fold test set to evaluate

both the interpolation and the extrapolation of learned concepts. To tackle this challenging

problem, we propose a neural-symbolic system by integrating neural networks with grammar

parsing and program synthesis, learned by a novel deduction–abduction strategy. In experi-

ments, the proposed neural-symbolic system can successfully learn the three-level meanings

of concepts with weak supervision and generalize much better than end-to-end neural meth-

ods like RNN and Transformer.

An additional study of few-shot learning also indicates that the proposed model can learn

new concepts with limited examples.
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Figure 7.1: Concept learning and generalization at three different levels. A learning agent
needs to simultaneously master (i) perception, how concepts are perceived from raw signals
such as images, (ii) syntax, how multiple concepts are structurally combined to form a valid
expression, and (iii) semantics, how concepts are realized to afford various reasoning tasks.

7.1 Introduction

Humans possess a versatile mechanism for learning concepts [FS16]. Take the arithmetic

examples in Figure 7.1: When we master concepts like digits and operators, we not only know

how to recognize, write, and pronounce them—what these concepts mean at the perceptual

level, but also know how to compose them into valid expressions—at the syntactic level,

and how to calculate the results by reasoning over these concepts—at the semantic level.

Learning concepts heavily rely on these three-level interweaving meanings. Such observation

also conforms with the classic view of human cognition, which postulates at least three

distinct levels of organizations in computation systems [Pyl84, FP88].

Crucially, a unique property of human concept learning is its systematic generalization.

Once we master the syntax of arithmetic using short expressions, we can parse novel, long

expressions. Similarly, once we master operators’ semantics using small numbers, we can

apply them over novel, large numbers. This property corresponds to the classic idea of

the systematicity (interpolation) and productivity (extrapolation) in cognition: An infinite
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number of representations can be constructed from a finite set of primitives, just as the

mind can think an infinite number of thoughts, understand an infinite number of sentences,

or learn new concepts from a seemingly infinite space of possibilities [LUT17, Mar18, Fod75].

To examine the versatile humanlike capabilities of concept learning with a focus on sys-

tematic generalization, we take inspiration from arithmetic and introduce a new benchmark

Hint, Handwritten arithmetic with INTegers. The task of Hint is intuitive and straightfor-

ward: Machines take as input images of handwritten expressions and predict the final results

of expressions, restricted in the integer space. The task of Hint is also challenging: Concepts

in Hint, including digits and operators, are learned in a weakly-supervised manner. Using

final results as the only supervision, machines are tasked to learn the three-level meanings

simultaneously—perception, syntax, and semantics of these concepts—to correctly predict

the results. Since there is no supervision on any intermediate values or representations, the

three-level meanings are presumably intertwined during learning. To provide a holistic and

rigorous test on whether learning machines can generalize the learned concepts, we introduce

a carefully designed evaluation scheme instead of using a typical i.i.d. test split. This new

scheme includes five subsets, focusing on generalization capabilities (i.e., interpolation and

extrapolation) at different levels of meanings (i.e., perception, syntax, and semantics).

We evaluate popular state-of-the-art deep learning methods, such as GRU [CGC14] and

Transformer [VSP17], on Hint. Our experiment shows that such end-to-end neural networks’

performance drops significantly on examples requiring interpolation and extrapolation, even

though these models can very well fit the training set. This finding echoes the long-standing

arguments against connectionist models, which are believed to lack systematic generalization

prevailing in human cognition [LB18, FP88].

Inspired by the superb generalization capability demonstrated in symbolic systems with

combinatorial structure [FP88] and recent advances in neural-symbolic integration [LHH20a,

MGK19, YWG18, MDK18], we propose an ANS system to approach the Hint challenge.

The proposed ANS system integrates the learning of perception, syntax, and semantics in a

principled framework; see an illustration in Figure 7.3. Specifically, we first utilize ResNet-

18 [HZR16] as a perception module to translate a handwritten expression into a symbolic
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sequence. This symbolic sequence is then parsed by a transition-based neural dependency

parser [CM14], which encodes the syntax of concepts. Finally, we adopt functional pro-

grams to realize the semantic meaning of concepts, thus view learning semantics as program

induction [EWN20].

It is infeasible to perform an end-to-end optimization for our model since syntactic parsing

and semantic reasoning are non-differentiable. Inspired by prior arts on abductive learning

[LHH20a, Zho19, DXY19], we derive a novel deduction-abduction strategy to coordinate

the learning of different modules. Specifically, during learning, the system first performs

greedy deduction over these modules to propose an initial, rough solution, which is likely to

produce a wrong result. A one-step abduction over perception, syntax, and semantics is then

applied in a top-down manner to search the initial solution’s neighborhood, which updates

the solution to explain the ground-truth result better. This revised solution provides pseudo

supervision on the intermediate values and representations, which are then used to train

each module individually.

Evaluated on Hint, ANS can successfully learn the three-level meanings of concepts with

weak supervision, obtaining an overall accuracy of 72% and outperforming end-to-end neural

methods by nearly 33 percents. A detailed analysis shows that the strong generalization

of ANS relies on the learned symbol system [FP88], which facilitates the extrapolation on

syntax and semantics in a symbolic manner. A preliminary study of few-shot learning further

demonstrates that ANS can quickly learn new concepts with limited examples, obtaining an

average accuracy of 62% on four new concepts with a hundred training examples.

7.2 Related Work

Three Levels of Concept Learning The surge of deep neural networks [LBH15] in the

last decade has significantly advanced the accuracy of perception learning from raw signals

across multiple modalities, such as image classification from image pixels [HZR16, KSH12]

and automatic speech recognition from audio waveforms [PCZ19, HDY12, GMH13].

The goal of syntax analysis is to understand the compositional and recursive struc-

198



tures in various tasks, such as natural language parsing [CM14, KK18], image and video

parsing [TCY05, ZM07, ZZ11, GSS09, QJZ18, QJH20, JCH20], and scene understanding

[HQZ18, HQX18, QZH18, JQZ18, CHY19, YLF20]. There exist two major structural types:

constituency structures [KK18] and dependency structures [CM14]. Constituency structures

use phrase structure grammar to organize input tokens into nested constituents, whereas

dependency structures show which tokens depend on which other tokens.

Semantics of concepts essentially describe its causal effect. There are two primary

semantic representations in symbolic reasoning. The first is logic [Llo12, MDK18], which

regards the semantic learning as inductive logic programming [MD94, EG18]—a general

framework to induce first-order logic theory from examples.

The other representation is program, which treats the semantic learning as inductive

program synthesis [KKT15, LST15, BGB17a, DUB17, ERS18, EMS18]. Recently, [EWN20]

release a neural-guided program induction system, DreamCoder, which can efficiently dis-

cover interpretable, reusable, and generalizable knowledge across a wide range of domains.

However, aforementioned literature tackles only one or two levels of concept learning and

usually requires direct supervision on model outputs.

In contrast, in this work we offer a more holistic perspective that addresses all three levels

of concept learning, i.e., perception, syntax, and semantics, taking one step closer to realize

a versatile mechanism of concept learning under weak supervision.

Systematic Generalization The central question in systematic generalization is: How

well can a learning agent perform in unseen scenarios given limited exposure to the underlying

configurations [Gre93]?

This question is also connected to the Language of Thought Hypothesis [Fod75]: The

systematicity, productivity, and inferential coherence characterize compositional generaliza-

tion of concepts [LST15]. As a prevailing property of human cognition, systematicity poses

a central argument against connectionist models [FP88]. Recently, there have been several

works to explore the systematic generalization of deep neural networks in different tasks
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[LB18, BMN18, KSS19, GLB19, XMY21].

By going beyond traditional i.i.d. train/test split, the proposed Hint benchmark well-

captures the characteristics of systematic generalization across different aspects of concepts

w.r.t. perception, syntax, and semantics.

Neural-Symbolic Integration Researchers have proposed to combine statistical learn-

ing and symbolic reasoning, with pioneer efforts devoted to different directions, includ-

ing representation learning and reasoning [Sun94, GLG08, MDK18], abductive learning

[LHH20a, DXY19, Zho19], knowledge abstraction [HOT06, BGH09], etc.. There also have

been recent works on the application of neural-symbolic methods, such as neural-symbolic

visual reasoning and program synthesis [YWG18, MGK19, LHH20b, PMS16], semantic pars-

ing [LBL16b, YZH18], and math word problems [LC20, LSR20]. Current neural-symbolic

approaches often require a perfect domain-specific language, including both the syntax and

semantics of the targeted domain. In comparison, the proposed model relaxes such a strict

requirement and enables the learning of syntax and semantics.

7.3 Benchmark

Task Definition The task of Hint is intuitive and straightforward: It is tasked to predict

the final results of handwritten arithmetic expressions in a weakly-supervised manner. Only

the final results are given as supervision; all intermediate values and representations are

latent, including symbolic expressions, parse trees, and execution traces.

Data Generation The data generation process follows three steps; see Figure 7.2 for an

illustration. First, we extract handwritten images from CROHME1 to obtain primitive con-

cepts, including digits 0 „ 9, operators `,´,ˆ,˜, and parentheses p, q. Second, we randomly

sample prefix expressions and convert them to infix expressions with necessary parentheses

based on the operator precedence; we only allow single-digit numbers in expressions. These

1https://www.cs.rit.edu/~crohme2019/

200

https://www.cs.rit.edu/~crohme2019/


symbolic expressions are fed into a solver to calculate the final results. Third, we randomly

sample handwritten images for symbols in an expression and concatenate them to construct

final handwritten expressions. We only keep the handwritten expressions as input and the

corresponding final results as supervision; all intermediate results are discarded.

Pre�x

In�x

HW

Results

×+328

(3+2)×8

40

−−53×52

5−3−5×2

0 1

2÷(5×4)

÷2×54 operator semantics
    +(a, b): a + b
    −(a, b): max(0, a - b)
    ×(a, b): a × b
    ÷(a, b): ceil(a ÷ b)

Figure 7.2: Illustrations of the data generation pipeline.

Train and Evaluation To rigorously evaluate how well the learned concepts are system-

atically generalized, we replace the typical i.i.d. train/test split with a carefully designed

evaluation scheme: (i) all handwritten images in the test set are unseen in training, (ii) at

most 1,000 samples are generated for each number of operators in expressions, (iii) limit the

maximum number of operators to 10 and the maximum values to 100 in the training set:

Dtrain Ă Dtrain “ tpx, yq : |x| ď 10,maxpvq ď 100u, (7.1)

where x is the handwritten expression, |x| its number of operators, y the final result, and v

all the intermediate values generated when calculating the final result.

We carefully devise the test set to evaluate different generalization capabilities (i.e.,

interpolation and extrapolation) on different levels of meanings (i.e., perception, syntax and
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Figure 7.3: The Arithmetic Neural-Symbolic model (ANS). ANS consists of three modules
for perception, syntax, and semantics. During inference, the model performs greedy deduc-
tion over three modules and directly proposes a solution. During learning, the proposed
solution is further revised by performing abduction based on the ground-truth supervision.
The updated solution is stored in a buffer, providing pseudo supervisions to train three
modules individually. Each node in the solution tree is an (image, symbol, value) triplet.

semantics). Specifically, the test set is composed of five subsets, formally defined as:

Dtest “ D
p1q
test YD

p2q
test YD

p3q
test YD

p4q
test YD

p5q
test,where

D
p1q
test “ Dtrain,

D
p2q
test Ă DtrainzDtrain,

D
p3q
test Ă tpx, yq : |x| ď 10,maxpvq ą 100u,

D
p4q
test Ă tpx, yq : |x| ą 10,maxpvq ď 100u,

D
p5q
test Ă tpx, yq : |x| ą 10,maxpvq ą 100u.

(7.2)

All above subsets requires generalization on perception of learned concepts. D
p1q
test requires

no generalization on either syntax or semantics, D
p2q
test requires interpolation on both syn-

tax and semantics, D
p3q
test requires interpolation on syntax and extrapolation on semantics,

D
p4q
test requires extrapolation on syntax and interpolation on semantics, and D

p5q
test requires

extrapolation on both syntax and semantics.

In total, the training and test set includes 11,170 and 48,910 samples, respectively. Sub-

sets in the test set are balanced to be 23%, 23%, 22%, 16%, and 16%.
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7.4 A Neural-Symbolic Approach

Below we first describe a general framework from a probabilistic perspective for learning the

Hint task as a neural-symbolic approach. This general framework implies a symbol system

with combinatorial syntactic and semantic structures, initially introduced by [FP88], as a

feasible representation of the human mind. Such a symbol system provides a principled

integration of perception, syntax, and semantics. Guided by this general framework, we

next provide a concrete instantiation of such a neural-symbolic system and introduce a novel

deduction-abduction strategy to learn it with weak supervision; see Figure 7.3 for overview.

A General Framework Given a neural-symbolic system, let x P Ωx denote the input

(images of handwritten expression in the Hint dataset), s P Ωs the symbolic expression,

pt P Ωt the parse tree of the symbolic expression, et P Ωe the execution trace, and y P Ωy

the output.

During learning, px, yq are observed but ps, pt, etq are latent. The likelihood of the ob-

servation px, yq marginalized over ps, pt, etq can be decomposed as:

ppy|x; Θq “
ÿ

s,pt,et

pps, pt, et, y|x; Θq

“
ÿ

s,pt,et

pps|x; θpqpppt|s; θsqppet|pt; θlqppy|etq,
(7.3)

where (i) s|x denotes the process of perceiving symbols from raw signals, guided by the

perceptual model θp of learned concepts; (ii) pt|s denotes the process of parsing the symbolic

expression into a parse tree, guided by the syntactic model θs; (iii) et|pt denotes the process of

reasoning over the parse tree, guided by the semantic model θl; and (iv) y|et is a deterministic

process: If the final output of et equals to y, ppy|etq “ 1, otherwise 0.

From a maximum likelihood prospective, the learning objective is to maximize the observed-
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data log likelihood Lpx, yq “ log ppy|xq. Take the derivative of L w.r.t. θp, θs, θl, we have:

∇θpLpx, yq “ Es,pt,et„pps,pt,et|x,yqr∇θp log pps|x; θpqs,

∇θsLpx, yq “ Es,pt,et„pps,pt,et|x,yqr∇θs log pppt|s; θsqs,

∇θlLpx, yq “ Es,pt,et„pps,pt,et|x,yqr∇θl log ppet|pt; θlqs,

(7.4)

where pps, pt, et|x, yq is the posterior distribution of ps, pt, etq given px, yq. Since ppy|etq can

only be 0 or 1, pps, pt, et|x, yq can be rewritten as:

pps, pt, et|x, yq “
pps, pt, et, y|x; Θq

ř

s1,pt1,et1 pps
1, pt1, et1, y|x; Θq

“

$

&

%

0, for s, pt, et R Q

pps,pt,et|x;Θq
ř

s1,pt1,et1PQ pps
1,pt1,et1|x;Θq , for s, pt, et P Q

(7.5)

where Q “ tps, pt, etq : ppy|etq “ 1, s P Ωs, pt P Ωt, et P Ωeu is the set of ps, pt, etq that

generates y. Usually, Q is a very small subset of the entire space of ps, pt, etq, i.e., Q Ď

Ωs ˆ Ωt ˆ Ωe, where ˆ denotes the Cartesian product.

Since taking expectation w.r.t. this posterior distribution is intractable, we use Monte

Carlo sampling to approximate it. Therefore, the learning procedure for an example px, yq

can be depicted as following:

1. sample ŝ, p̂t, êt „ pps, pt, et|x, yq;

2. use px, ŝq to update the perception model (θp);

3. use pŝ, p̂tq to update the parsing model (θs);

4. use pp̂t, êtq to update the reasoning model (θl).

Instantiation: Arithmetic Neural-Symbolic (ANS) The general framework of the

desired neural-symbolic system described above is agnostic to the choice of functions and

algorithms. Below we delineate a learnable implementation, named ANS, capable of learning

generalizable concepts in arithmetic on the proposed Hint dataset.
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7.4.0.1 Perception: Neural Network (NN)

The role of the perception module is to map a handwritten expression x into a symbolic

expression s. Since disentangling visual symbols from handwritten expressions is trivial in

this domain , we assume the input as a sequence of handwritten images, where each image

contains one symbol. We adopt a standard ResNet-18 [HZR16] as the perception module

to map each handwritten image into a probability distribution over the concept space Σ.

Formally,

pps|x; θpq “
ź

i

ppwi|xi; θpq “
ź

i

softmaxpφpwi, xi; θpqq, (7.6)

where φps, x; θpq is a scoring function parameterized by a NN with parameters θp. Since

learning such an NN from scratch is prohibitively challenging, the ResNet-18 is pre-trained

unsupervisedly [VVG20] on unlabeled handwritten images.

7.4.0.2 Syntax: Dependency Parsing

To parse the symbolic sequence into a parse tree, we adopt a greedy transition-based neural

dependency parser [CM14], commonly used for parsing natural language sentences. The

transition-based dependency parser relies on a state machine that defines the possible tran-

sitions to parse the input sequence into a dependency tree; see panel (b) of Figure 7.3. The

learning process induces a model to predict the next transition in the state machine based

on the transition history. The parsing process constructs the optimal sequence of transi-

tions for the input sequence. A dependency parser for arithmetic expressions is essentially

approximating the Shunting-yard algorithm.

In our parser, a state c “ pα, β,Aq consists of a stack α, a buffer β, and a set of dependency

arcs A. The initial state for a sequence s “ w0w1...wn is α “ rRoots, β “ rw0w1...wns, A “ H.

A state is regarded as terminal if the buffer is empty and the stack only contains the node

Root. The parse tree can be derived from the dependency arcs A. Let αi denote the i-th top

element on the stack, and βi the i-th element on the buffer. The parser defines three types
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of transitions between states:

‚ Left-Arc: add an arc α1 Ñ α2 to A and remove α2 from the stack α. Precondition:

|α| ě 2.

‚ Right-Arc: add an arc α2 Ñ α1 to A and remove α1 from the stack α. Precondition:

|α| ě 2.

‚ Shift: move β1 from the buffer β to the stack α. Precondition: |β| ě 1.

The goal of the parser is to predict a transition sequence from an initial state to a

terminal state. As the parser is greedy, it attempts to predict one transition from T “

tLeft-Arc,Right-Arc,Shiftu at a time, based on the current state c “ pα, β,Aq. The

features for a state c contains following three elements: (i) The top three words on the stack

and buffer: αi, βi, i “ 1, 2, 3; (ii) The first and second leftmost/rightmost children of the top

two words on the stack: lc1pαiq, rc1pαiq, lc2pαiq, rc2pαiq, i “ 1, 2; (iii) The leftmost of left-

most/rightmost of rightmost children of the top two words on the stack: lc1plc1pαiqq, rc1prc1pαiqq, i “

1, 2. We use a special Null token for non-existent elements. Each element in the state rep-

resentation is embedded to a d-dimensional vector e P Rd, and the full embedding matrix is

denoted as E P R|Σ|ˆd, where Σ is the concept space. The embedding vectors for all elements

in the state are concatenated as its representation: c “ re1 e2...ens P R
nd. Given the state

representation, we adopt a two-layer feed-forward NN to predict a transition.

7.4.0.3 Semantics: Program Synthesis

Inspired by recent advances in program synthesis [EWN20, BGB17a, DUB17], we adopt

functional programs to represent the semantics of concepts and view learning as program

induction. The semantics of a concept is treated as a function, mapping certain inputs to an

output. Learning semantics is equivalent to searching for a program that approximates this

unknown function. Compare to purely statistical approaches, symbolic programs exhibit

better generalizability and interpretability, and the learning is also more sample-efficient.

To learn semantics as programs, we start from DreamCoder [EWN20], a machine learning
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system that can efficiently synthesize interpretable, reusable, and generalizable programs

across a wide range of domains. DreamCoder embodies a wake-sleep Bayesian program

induction approach to progressively learn multiple tasks in a domain, given a set of primitives

and input-out pairs for each task. For arithmetic reasoning, the Peano axioms [Pea89]

define four primitives: (1) 0; (2) inc: a Ñ a ` 1; (3) dec: a Ñ maxp0, a ´ 1q; (4) if:

pa, b, cq Ñ b pif a is 0q or c pelseq. Any arithmetic function can be provably composed

from these four primitives. This set of primitives is augmented with a recursion primitive,

Y-combinator (a.k.a., fixed-point combinator). The Y-combinator enables the derivation of

recursive functions and is the crux of extrapolating to large numbers.

The semantics of concepts in Hint, including digits, operators, and parentheses, are all

represented as programs composed from these primitives L “ t0, inc, dec, if, Yu. During

inference, these programs are used for reasoning to obtain the results. The learning for a

concept c is to find a program ρc to maximize the following objective:

ρc “ arg max
ρ
ppρ|Dc, Lq 9 pDc|ρq ppρ|Lq, (7.7)

where Dc denotes the input-output pairs of the concept c for program induction, ppDc|ρq

the likelihood of the program ρ explaining Dc, and ppρ|Lq the prior of ρ under the library

L, which defines a generative model over programs. The maximization in Equation (7.7)

is achieved by a stochastic search process guided by a neural network, which is trained to

approximate the posterior distribution ppρ|Dc, Lq.

7.4.0.4 Learning by Deduction-Abduction

In Section 7.4, we derive a general learning procedure for such a neural-symbolic system. The

key is to perform efficient sampling from the posterior distribution pps, pt, et|x, yq. In short,

we generalize the back-search algorithm in [LHH20a] to a deduction-abduction strategy to

enable efficient sampling from the posterior distribution of perception, syntax, and semantics.
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Figure 7.4: Abduction over perception, syntax, and semantics. Each node in the solution
tree is a triplet of (image, symbol, value). Parts revised during abduction are highlighted in
red.

Deduction For a given example px, yq, we first perform greedy deduction from x to obtain

a candidate solution of a compound tree ct “ px, ŝ, p̂t, êtq. This process is likely to produce

a wrong result, thus requiring a separate abduction process to further correct it, detailed

below.

Abduction To find a revised solution ct˚ that can reach the goal y, we search the neigh-

bors of ct in a top-down manner by performing abduction over perception (s), syntax (pt),

and semantics (et), as illustrated in Figure 7.4. Our abduction strategy generalizes the

perception-only, one-step back-search algorithm described in [LHH20a] to all three levels.

The Solve function and the priority used in the top-down search are similarly to the ones

in [LHH20a]. The abduction can also be extended to multiple steps, but we only use one

step for lower computation overhead.

The above deduction-abduction strategy likely behaves as a Metropolis-Hastings sampler

for the posterior distribution [LHH20a].
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7.5 Experiments and Results

Experimental Setup

Training Both the ResNet-18 and the dependency parser in the proposed ANS model are

trained by an Adam optimizer [KB15] with a learning rate of 10´4 and a batch size of 512.

The program synthesis module is adapted from DreamCoder [EWN20].

Evaluation Metric We evaluate the models with the accuracy of final results. Note that

a predicted result is considered correct when it exactly equals to the ground-truth.

Baselines For end-to-end NN baselines, the task of Hint is formulated as a sequence-to-

sequence problem: The input is an expression sequence, and the output is a sequence of

digits, which is then converted to an integer as the predicted result. We test two popular

seq2seq models: (1) BiGRU: the encoder is a bi-directional GRU [CGC14] with three layers,

and the decoder is a one-layer GRU; (2) TRAN: a Transformer model [VSP17] with three

encoder-layers, three decoder-layers, and four attention heads for each layer. Before being

fed into these models, the handwritten expressions are processed by the same ResNet-18

used in ANS. We test models with varied numbers of layers and report ones with the best

results. To speed up the convergence, we train all models with a simple curriculum from

short expressions to long ones.

Neural-Symbolic v.s. End-to-End Neural Networks

We compare the performance of the proposed neural-symbolic model ANS with end-to-

end neural baselines on Hint. As shown in Table 7.1, both BiGRU and TRAN obtain high

accuracy on the test subset 1, which indicates that they can generalize over perception very

well.

However, their performances drop significantly on the test subsets 2„5, which require

systematic generalization over syntax and semantics. Notably, their accuracy is less than

10% on test subsets 3 and 5 that involve larger numbers compared to the training set.
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Figure 7.5: The evolution of semantics in ANS from initial primitives
{0,inc,dec,if,Y}. The programs representing the semantics of concepts are denoted by
lambda calculus (a.k.a. λ-calculus) with De Bruijn indexing. Note that there might be
different yet functionally-equivalent programs to represent the same semantics of concepts.
Here, we only show one possibility for each concept.

This result indicates that the pure neural models do not learn the semantics of concepts

in a generalizable way and fail to extrapolate to large numbers. In contrast, the proposed

ANS model consistently outperforms BiGRU and TRAN by at least 30 absolute percent

across all test subsets 2„5. This superb performance demonstrates the strong systematic

generalization of ANS, including both interpolation and extrapolation w.r.t. syntax and

semantics.

Table 7.1: The performance comparison of ANS and end-to-end neural networks, i.e., GRU
(BiGRU) and Transformer (TRAN).

Input Model
Test Accuracy (%)

Overall 1 2 3 4 5

Symbol
(Embedding)

BiGRU 49.71 97.05 63.67 11.58 52.41 12.57
TRAN 34.58 98.31 29.79 2.91 26.39 2.76
ANS 88.36 99.26 97.56 84.66 87.65 65.37

Image
(ResNet-18)

BiGRU 39.39 87.02 46.17 6.51 40.44 6.47
TRAN 32.95 87.31 30.74 2.67 31.17 2.55
ANS 71.97 89.10 84.29 66.77 68.19 40.73

How do models extrapolate? Among the generalization capability, we are particularly

interested in extrapolation. Based on the experimental results, we firmly believe that the

key is recursion. In ANS, the extrapolation on syntax is achieved by the transition system of

the dependency parser, which recursively applies transition actions to parse arbitrarily long

expressions. The extrapolation on semantics is realized by the recursion primitive, i.e., Y-

combinator. It allows programs to represent recursive functions, which can decompose large
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numbers into smaller ones by recursively invoking themselves. For BiGRU, although the

recurrent structure in its hidden cells serves as a recursive prior on syntax, no such prior in

its representation for semantics. This deficiency explains why BiGRU would achieve a decent

accuracy (40.44%) on the test subset 3 (extrapolation only on syntax) but a much lower

accuracy (6.51%) on the test subset 4 (extrapolation only on semantics). Taken together,

these observations strongly imply that the recursive prior on task-specific representations

is the crux of extrapolation, which is also in line with the recent analysis of Graph Neural

Network, where it successfully extrapolates algorithmic tasks due to the task-specific non-

linearities in the architecture or features [XLZ20a, XLZ20b].

Ablation Study

Table 7.2 shows an ablation study on the proposed ANS model. In general, providing

the ground-truth meaning of concepts can ease the learning and lead to higher test accuracy.

Among the three levels of concepts, perception is the hardest to learn since the handwriting

images possess a large variance in terms of the visual appearance. The syntax and semantics

are relatively easier to learn, since the recursive prior of the transition-based dependency

parser and Y-combinator fits the task well.

Table 7.2: Ablation study on ANS. Xindicates that the ground-truth labels are given during
training. For each setting (row), we perform three experiments with different random seeds
and report the results of the model with the highest training accuracy.

Training Setting Test Accuracy (%)
Per. Syn. Sem. Overall 1 2 3 4 5

71.97 89.10 84.29 66.77 68.19 40.73
X 86.44 94.53 91.62 89.58 78.22 71.18

X 80.14 92.51 90.16 71.32 84.27 56.27
X 88.36 99.26 97.56 84.66 87.65 65.37
X X 97.81 100.00 100.00 96.66 100.00 90.97
X X 95.84 99.60 98.23 98.09 91.50 88.20

X X 88.93 94.30 92.19 90.06 82.99 80.88

Figure 7.5 illustrates the typical pattern of the evolution of semantics in ANS. This

pattern is highly in accord with how children learn arithmetic in developmental psychology

[CFF99]: The model first masters the semantics of digits as counting, then learns ` and ´

as recursive counting, and finally it figures out how to define ˆ and ˜ based on the learned
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programs for ` and ´. Crucially, ˆ and ˜ are impossible to be correctly learned before

mastering ` and ´. The model is endowed with such an incremental learning capability since

the program induction module allows the semantics of concepts to be built compositionally

from those learned earlier [EWN20].

Few-shot Concept Learning

We further conduct a preliminary study of few-shot learning to demonstrate the ANS’s

potential in learning new concepts with limited examples. As shown in Table 7.3, we define

four new concepts with common semantics. Their visual appearances are denoted by four

unseen handwritten symbols tα, β, γ, φu, and their syntax is decided by their precedence

(i.e., 1 is for t`,´u and 2 is for tˆ,˜u). We randomly sample a hundred examples from

short to long expressions for training each new concept and fine-tune the ANS model on the

new training data.

Table 7.3 shows the test accuracy for each new concept. The proposed ANS model obtains

a decent performance with an average overall accuracy of 61.92%. Concepts with more

complex semantics (tγ, φu) are generally harder to learn than those with simpler semantics

(tα, βu).

Table 7.3: Few-shot concept learning with ANS.

Per. Syn. Sem.
Test Accuracy (%)

Overall 1 2 3 4 5
α 1 maxpx, yq 64.08 70.91 81.98 70.79 50.56 40.66
β 1 minpx, yq 72.45 85.45 83.93 81.82 65.91 40.22
γ 2 px` yq{2 56.73 76.36 70.09 61.80 41.94 27.47
φ 2 xy ´ px` yq 54.40 76.36 68.81 41.35 56.04 22.09
avg. - - 61.92 77.27 76.20 63.94 53.61 32.61

7.6 Discussion: Contributions and Limitations

In this work, we take inspiration from how humans learn arithmetic and present a new chal-

lenge for the machine learning community, Hint, which serves as a minimal yet complete

benchmark towards studying systematic generalization of concepts w.r.t. perception, syn-

tax, and semantics. Additionally, we propose a neural-symbolic system, Arithmetic Neural-
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Symbolic (ANS), to approach this challenge. ANS integrates recent efforts from the disci-

plines of neural networks, grammar parsing, and program synthesis and successfully learns

the three-level meanings of concepts with weak supervision.

In this work our discussions focus on a relatively simple domain with context-free seman-

tics. One potential future work is to extend our observations to more realistic and complex

domains, such as visual reasoning [JHM17a, HM19] and question answering [RZL16]. We

may consider to inject contexts into the semantics of concepts and capture their stochastic

nature with probabilistic programs [Gha15, CGH17, GXG18, BCJ19, HBM20].
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CHAPTER 8

Conclusion

This dissertation introduces our contributions in building up and integrating perception,

interaction, learning, and reasoning modules to solve the human-like holistic 3D scene un-

derstanding problem. We are still missing several key dimensions in this dissertation, such

as studies about how brains work and humans behave, how to do long-horizon planning, and

how to actively perceive and interact with the environments. We would like to investigate

these problems in the future.

To sum up, it requires interdisciplinary expertise across computer vision, natural language

understanding, computer graphics, machine learning, robotics, neuroscience, and cognitive

science to build up a human-like intelligence system, which is beyond the Statistics and

Computer Science themselves. Machine’s capability in solving the general tasks, i.e., the core

of human intelligence, would be easily trapped by training on the manually-created tasks

and data in a specific field, losing the generalizability to other tasks and domains. Therefore,

we believe it is necessary to solve the interdisciplinary AI problems involved with multiple

interacting modalities and fields. By teaching machines to solve the holistic tasks with a

designed curriculum using a unified framework, it is hopeful to gradually obtain the core

commonsense knowledge for human intelligence and improve the generalization capability

across scenes and skills.

In the end, we summarize several fundamental and promising research directions.

‚ Perception. Most current perception models have reached performance bottleneck on

single-modal input and are not generalizable to novel scenarios and tasks. Therefore,

how to efficiently learn from multi-modal data becomes the next critical challenge

for the community. Moreover, we still lack a general-purpose multi-modal perception
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benchmark for evaluating the performance and generalization capability in multi-modal

perception.

‚ Interaction. In order to help machines understand humans, we should study more fine-

grained level human-object interactions, for example, the 4D interactions between our

body shape and object, as well as human-human interactions, such as social interactions

under various situations. Besides, goal-driven active interaction with the 3D scenes and

long-horizon planning also worth exploration. They require policies for interacting and

planning from the first-person view. Recent embodied AI platforms [XZH18, SKM19]

create several simulated environments for evaluating these capabilities.

‚ Learning and Reasoning. Humans excel at learning efficiently with less or without

supervision, abstracting symbolic and hierarchical representations from observations,

and generalizing concepts and knowledge to novel domains and environments. There-

fore, learning efficient computational model [GXH19, ZGH21], building a powerful

self-supervised representation learning model [DCL18], learning symbolic, hierarchical,

compositional representation from data [HLZ21], and developing concepts for achieving

systematic generalization [LHH21] are the fundamental problems we hope to address

in the next decade.

‚ Interdisciplinary AI Research. It requires enormous efforts from neuroscience and cog-

nitive science for interpreting and understanding human intelligence [ZGF20, GLG20].

These efforts serve as primary inspirations for AI researchers in different fields (e.g.,

computer vision, natural language processing, computer graphics, robotics). With

rapidly developed computational power and data, the new era has begun for us to

integrate our expertise in various areas, tackle challenging interdisciplinary tasks, and

build machines that can truly think and behave like humans.
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