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1 Learning of Prior Knowledge

The learning process of our method includes two steps: i) collecting the statistics
of scene categories, object categories, object sizes, and supporting relations from
SUN RGB-D dataset [1]; ii) collecting the statistics of grouping occurrences and
the geometric relations between objects and human from Watch-n-Patch [2].

Using SUN RGB-D, we model the prior of scene types, object categories and
support relations by multinoulli distributions. For example, a lamp is supported
by the floor with a probability of 0.4 and by a desk with a probability of 0.2.
The branching probability is simply counting the frequency of each alternative
choice. The distribution of the object sizes is learned via non-parametric kernel
density estimation.

The human-centric grouping occurrence and human-object interactions in
3D space are learned from the Watch-n-Patch. This dataset collects the RGB-D
videos of human activities in o�ces and kitchens. Since some activities are irrele-
vant with objects, we learn the activities of ‘reading’, ‘play-computer’, ‘take-item’
and ‘put-down-item’ in all the o�ce videos. For each activity, we first extract
key frames from each sequence with group activity labels. Then we compute the
occurrence frequency of the objects around human within a distance threshold,
and model the prior of object category using a multinomial distribution. The
geometric relations between the objects and humans are similarly learned by
fitting normal distributions of relative distance, height, and orientation between
each joint of a human pose and the object center.

2 2D Room Layout Estimation

Similar to [3], we use a keypoint-based room layout representation to train our
network. Figure 1 shows the regular room types defined in [4] with their respec-
tive keypoints.

Our model is able to predict both keypoint and room type from an input
image using a single model. To achieve this goal, we increase the number of
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Fig. 1: Types of room layout. The room types are defined in [4]. These 11 room
types cover most of the possible configurations of the indoor scenes under Man-
hattan world assumption [5].
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Fig. 2: Network Architecture. The “hourglass” modules work as encoder-decoders
which allow for repeated bottom-up, top-down inference.

channels in the output layer to match the total number of keypoints (in total
48) of all 11 room types. The cost function is the same as described in [3],
which incorporates the Euclidean loss for layout heatmap regression and the
cross-entropy loss for room type estimation.

Figure 2 shows our network architecture. Compared with [3], we use the
“stacked hourglass” network [6] as our basic network architecture rather than
SegNet [7]. Our network consists of multiple stacked hourglass modules which
allow for repeated bottom-up, top-down inference.

The input to the network is 256x256. The output of the network is the room
type keypoint heatmaps in a resolution 64x64 within a respect room type cat-
egory label. We use the Adam optimizer [8] with batch size 16, initial learning
rate 0.0001. We train 150 epochs, which takes about 2 days on a 12GB NVIDIA
Titan X GPU. We also degrade the gradient of background pixels by multiply-
ing them with a factor of 0.2 to prevent the output converges to zero due to the
imbalance between foreground and background distribution.
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3 Implementation Details

For 2D object detection, we fine-tune the object detector on SUN RGB-D with 30
object categories. Since [4] and [9] have no ground-truth of the camera parameter,
we train the 2D layout estimation module using [4] as the initial model, followed
by using the feature of the heatmap (stacking three FC layers (512-16-1)) to
further train camera parameter and scene category on SUN RGB-D. During the
initialization and joint inference process, we use the depth estimation model as
described in [10], surface normal estimation in [11], and semantic segmentation
in [12]. These models are trained on the training set of the SUN RGB-D or
NYU v2 dataset [13] (included in the SUN RGB-D). In this paper, we further
incorporate human context inference on the subset of o�ces and skip it on other
scenes. During joint inference, we fix the scene category, object categories and
support relations to reduce the computational complexity. We used OpenGL [14]
to render the depth, surface normal and segmentation map. Rendering each map
takes about 1 second. On average, our joint inference process takes about one
hour for each image on a single CPU core.

4 Additional Experiment Results

4.1 Evaluation of 2D Layout Estimation

We evaluate the 2D layout estimation without joint inference on LSUN dataset [4]
and Hedau dataset [9]. The LSUN dataset consists of 4000 training, 394 valida-
tion and 1000 test images. The Hedau dataset contains 209 training, 56 validation
and 105 test images. We follow the standard evaluation procedure [17] and use
pixel errors and keypoint errors as two evaluation metrics. Pixel errors compute
the pixel-wise error between the ground truth and estimations of the surface
label, and the keypoint errors only considers the average Euclidean distance
between the annotated and estimated keypoints. As reported in Table 1, our

Table 1: Quantitative comparisons of 2D layout estimation on LSUN [4] and
Hedau dataset [9]

Method

LSUN Hedau
Keypoint Error (%) Pixel Error (%) Pixel Error(%)

Hedau et al. (2009) [9] 15.48 24.23 21.20
Zhao et al. (2013) [15] - - 14.50
Mallya et al. (2015) [16] 11.02 16.71 12.83
Dasgupta et al. (2016) [17] 8.20 10.63 9.73
Ren et al. (2016) [18] 7.57 5.23 8.67
Izadinia et al. (2017) [19] - 10.04 10.15
Lee et al. (2017) [3] 6.30 9.86 8.34
Zhao et al. (2017) [20] 5.29 3.84 6.60

Ours (init.) 5.22 4.53 7.03
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approach achieves 5.22% keypoint error, which outperforms all existing methods
and comparable pixel error with the previous best results [20] on both LSUN
and Hedau dataset.

4.2 Evaluation of Camera Parameter Estimation

We compute the mean absolute error between our estimation and the ground-
truth on testing set of SUN RGB-D. As shown in Table 2, comparing with the
traditional geometry-based method [9], the proposed method gains a significant
improvement. Quantitative results of the comparison over all the scene categories
are shown in Figure 3. Empirically, geometry-based methods perform poorly in
cluttered scenes (e.g., storage rooms) and perform well in clean scenes with clear
orthogonal lines (e.g., receptions). Our method provides a good estimation which
applies to most of the indoor scenes, improving the generalization ability of the
monocular reconstruction algorithms.

Figure 3 shows the comparison in detail over all categories. We can see that
the geometry-based method performs well over the scenes with clear lines in three
orthogonal directions like receptions, but results in large errors over cluttered
scenes like storage rooms. Our method provides a good estimation which applies
to most of the indoor scenes, improve the generalization ability for the single-
view reconstruction algorithms.

4.3 Evaluation of 3D Layout Estimation

Figure 4 shows the comparison with 3DGP over all categories; we can also ob-
serve that 3DGP fails in some scene categories such as dinette and cafeteria,
which further reflects the drawbacks of the geometry-based methods.

Table 2: Camera parameter estimation.

Method

Mean Absolute Error
focal length pitch roll

Hedau et al. [9] 141.78 3.45 33.85
Ours 35.87 3.12 7.60

Table 3: Comparisons of 3D object detection on SUN RGB-D dataset.

Method bed chair sofa table desk toilet fridge sink bathtub bookshelf counter door dresser lamp tv
[21] 5.62 2.31 3.24 1.23 - - - - - - - - - - -
Ours (init.) 45.55 5.91 23.64 4.20 2.50 1.91 14.00 2.12 0.55 2.16 0.34 0.01 5.69 1.12 0.62
Ours (joint.) 58.29 13.56 28.37 12.12 4.79 16.50 15.18 2.18 2.84 7.04 1.60 1.56 13.71 2.41 1.04

nightstand books tvstand sofachair cabinet endtable dressermirror person recyclebin curtain whiteboard mirror picture paper computer
- - - - - - - - - - - - - - -
5.83 0.00 3.04 8.87 0.00 0.65 17.16 1.31 0.00 0.27 0.00 0.00 0.00 0.00 0.00
8.80 0.02 6.69 16.99 0.48 3.15 19.43 4.04 0.63 0.40 0.20 0.00 0.00 0.00 0.00
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Geometric Method Ours

Fig. 3: Estimation error of focal length.

3DGP Ours

Fig. 4: Quantitative comparisons of 3D layout estimation.

4.4 Evaluation of 3D Object Detection

Table 3 shows the evaluation of 3D object detection over 30 categories of objects.
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5 More Qualitative Results

Fig. 5: More qualitative results
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Fig. 5: More qualitative results (cont.)
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Fig. 5: More qualitative results (cont.)
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Fig. 5: More qualitative results (cont.)
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