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ABSTRACT

Inspired by humans’ remarkable ability to master arithmetic and generalize to
unseen problems, we present a new dataset, HINT, to study machines’ capabil-
ity of learning generalizable concepts at three different levels: perception, syntax,
and semantics. In particular, concepts in HINT, including both digits and opera-
tors, are required to learn in a weakly-supervised fashion: Only the final results
of handwriting expressions are provided as supervision. Learning agents need to
reckon how concepts are perceived from raw signals such as images (i.e., percep-
tion), how multiple concepts are structurally combined to form a valid expression
(i.e., syntax), and how concepts are realized to afford various reasoning tasks (i.e.,
semantics). With a focus on systematic generalization, we carefully design a five-
fold test set to evaluate both the interpolation and the extrapolation of learned
concepts. To tackle this challenging problem, we propose a neural-symbolic sys-
tem by integrating neural networks with grammar parsing and program synthe-
sis, learned by a novel deduction—abduction strategy. In the experiments, the pro-
posed neural-symbolic system demonstrates strong generalization capability and
significantly outperforms end-to-end neural methods like RNN and Transformer.
An additional preliminary few-shot study also indicates that the proposed neural-
symbolic system can quickly learn new concepts with limited examples
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of human cognition, which postulates at least
three distinct levels of organizations in com-
putation systems (Pylyshyn,|1984). Crucially, a
unique property of human concept learning is its systematic generalization (Xie et al., 2021} [Lake
et al.,2017; [Fodor et al.,|1988)). Once we master arithmetic using short expressions with small num-
bers, we can generalize to novel, long expressions with unseen handwriting and large numbers.

Figure 1: Concept learning and generalization
on perception, syntax, and semantics.

To examine the versatile humanlike capabilities of concept learning with a focus on systematic gen-
eralization, we introduce a new benchmark HINT, Handwritten arithmetic with INTegers. The task
of HINT is intuitive: Machines take as input images of handwritten expressions and predict the final
results of expressions, restricted in the integer space. The task of HINT is also challenging: Concepts

!Check the project website: t inyurl.com/iclr21hint|for the dataset, the code, and a demo video.
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in HINT, including digits and operators, are learned in a weakly-supervised manner. Using final re-
sults as the only supervision, the three-level meanings are presumably intertwined during learning.
To provide a holistic and rigorous test on whether learning machines can generalize the learned con-
cepts, we carefully design an evaluation scheme to test generalization capabilities (i.e., interpolation
and extrapolation) at different levels of meanings (i.e., perception, syntax, and semantics).

Inspired by the superb generalization capability demonstrated in symbolic systems with combina-
torial structure (Fodor et al., [I988)) and recent advances in neural-symbolic integration (Li et al.
2020a; |Y1 et al., 2018; |Manhaeve et al., [2018)), we propose an Arithmetic Neural-Symbolic (ANS)
system to approach the HINT challenge. The proposed ANS system integrates the learning of percep-
tion, syntax, and semantics in a principled framework; see an illustration in Fig. 2] Specifically, we
first utilize ResNet-18 (He et al.,2016) as a perception module to translate a handwritten expression
into a symbolic sequence. This symbolic sequence is then parsed by a transition-based neural de-
pendency parser (Chen & Manning} 2014)), which encodes the syntax of concepts. Finally, we adopt
functional programs to realize the semantic meaning of concepts, thus view learning semantics as
program induction (Ellis et al.,[2020). We derive a novel deduction-abduction strategy to coordinate
the learning of different modules. During learning, the system first performs greedy deduction over
these modules to propose an initial, rough solution, which is likely to produce a wrong result. A
one-step abduction over perception, syntax, and semantics is then applied in a top-down manner to
rectify the initial solution. The revised solution provides pseudo supervisions on the intermediate
values and representations, which are then used to train each module individually.

Evaluated on HINT, ANS exhibits strong systematic generalization with an overall accuracy of 72%,
outperforming end-to-end neural methods by nearly 33%. Results also indicate the strong general-
ization of ANS relies on its underlying symbol system (Fodor et al., |1988) encoded with recursive
priors, which facilitate the extrapolation on syntax and semantics. A preliminary study of few-shot
learning further demonstrates that ANS can quickly learn new concepts with limited examples, ob-
taining an accuracy of 62% on four new concepts with a hundred training examples.

2 THE HINT BENCHMARK

Task Definition The task of HINT is intuitive and straightforward: It is tasked to predict the final
results of handwritten arithmetic expressions in a weakly-supervised manner. Only the final results
are given as supervision; all intermediate values and representations are latent, including symbolic
expressions, parse trees, and execution traces.

Data Generation The data generation process follows three steps; see Fig. for an illus-
tration. First, we extract handwritten images from CROHME, to obtain primitive concepts {0~
9,+,—, %, =,(,)}. Second, we randomly sample prefix expressions and convert them to infix ex-
pressions with necessary parentheses based on the operator precedence; we only allow single-digit
numbers in expressions. These symbolic expressions are fed into a solver to calculate the final re-
sults. Third, we randomly sample handwritten images for symbols in an expression and concatenate
them to construct final handwritten expressions. We only keep the handwritten expressions as input
and the corresponding final results as supervision; all intermediate results are discarded.

Train and Evaluation To evaluate how well the learned concepts are systematically generalized,
we replace the typical i.i.d. train/test split with a carefully designed evaluation scheme:

Dirain © Dirain = {(x,y) : |2] < 10, max(v) < 100}, Dyese = D{L), U D2, L D), u DY, LDE),

tes tes tes
1 . . .
Dt(egt = Dirain, no generalization on either syntax or semantics
2 . . .
Dt(ezt < Dirain\Dirain, interpolation on both syntax and semantics

Dt(zzt < {(z,y) : |z| <10, max(v) > 100}, interpolation on syntax and extrapolation on semantics

D

vest © {(2,y) 1 |z| > 10, max(v) <100}, extrapolation on syntax and interpolation on semantics

Dggzt < {(z,y) : |z| > 10, max(v) > 100}, extrapolation on both syntax and semantics

where x is the handwritten expression, |z| its number of operators, y the final result, and v all the
intermediate values generated when calculating the final result. All subsets in the test set requires
generalization on perception, since all images in the test set are unseen in training.
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Figure 2: The Arithmetic Neural-Symbolic model (ANS). . During inference, the model performs
greedy deduction over (a) perception , (b) syntax, (c¢) semantics, and directly proposes a solution.
During learning, the proposed solution is further revised by performing (d) abduction based on the
ground-truth supervision. The updated solution is stored in a buffer, providing pseudo supervisions
to train three modules individually. Each node in the solution tree is a triplet of (image, ,
value). Parts revised in abduction are highlighted in red.

3 ARITHMETIC NEURAL-SYMBOLIC (ANS) MODEL

To approach the HINT challenge, we propose a neural-symbolic model ANS, which integrates the
learning of perception, syntax, and semantics in a principled framework; see an illustration in Fig.

The perception module is a standard ResNet-18 (He et al.,2016)) to map a handwritten expression
x into a symbolic expression s. Since disentangling visual symbols from handwritten expressions is
trivial in this domain, we assume the input as a sequence of handwritten images, where each image
contains one symbol. Since learning it from scratch is prohibitively challenging, the ResNet-18 is
pre-trained unsupervisedly (Van Gansbeke et al.,|2020) on unlabeled handwritten images.

To parse the symbolic sequence into a syntactic tree, we adopt a greedy transition-based neural de-
pendency parser (Chen & Manning}, 2014, commonly used for parsing natural language sentences.
The transition-based dependency parser relies on a state machine that defines the possible transitions
to parse the input sequence into a dependency tree; see panel (b) of Fig. 2] The learning process in-
duces a model to predict the next transition in the state machine based on the transition history. The
parsing process constructs the optimal sequence of transitions for the input sequence. A dependency
parser for arithmetic expressions is essentially approximating the Shunting-yard algorithm,

To learn semantics as programs, we start from DreamCoder (Ellis et al., 2020), which embodies a
wake-sleep Bayesian program induction approach to progressively learn multiple tasks from a set
of domain primitives and input-out pairs for each task. For arithmetic reasoning, the Peano axioms
(Peanol, |1889) define four primitives: (1) 0; (2) inc:a —a+1;(3) dec: a > max(0,a—1); (4) i £:
(a,b,¢) —>b (if a is 0) or ¢ (else). This set of primitives is augmented with a recursion primitive,
Y-combinator| (a.k.a., fixed-point combinator). The Y-combinator enables the derivation of recursive
functions and is the crux of extrapolating to large numbers.

The abduction is applied over perception, syntax, and semantics in a top-down manner to rectify
the initial solution, as illustrated in Fig. [2] The revised solution provides pseudo supervision on the
intermediate values and representations, which are then used to train each module individually.

Please refer to Appendix [B|for more details on the model and experimental settings.

4 RESULTS AND DISCUSSIONS Table 1: The performance comparison of ANS and

4.1 NESY Vv.S. E2E NEURALNETS end-to-end neural networks, i.e., GRU (BiGRU)
We compare the performance of the proposed and Transformer (TRAN).
neural-symbolic model ANS with end-to-end mput  Model Test Accuracy (%)
. . Overall 1 2 3 4 5

neural baselines on HINT. As shown in Table[T} o BIORU| @71 9705 667 1058 5241 1257

i in hi ymo  TRAN | 3458 9831 2979 291 2639  2.76
both BiGRU and TRAN obtain high accuracy  embeasing 5" | 3336 926 9785 sies 8768 6537
on the test subset 1, which indicates that they Image  BIORU | 3939 8702 4607 651 4044 647
can generalize over perception very well. How-  ®esNev1s) TS0 | 2305 8000 000 ~0 2el doms

ever, their performances drop significantly on
the test subsets 2~5, which require systematic generalization over syntax and semantics. Notably,
their accuracy is less than 10% on test subsets 3 and 5 that involve larger numbers compared to the
training set. This result indicates that the pure neural models do not learn the semantics of concepts
in a generalizable way and fail to extrapolate to large numbers. In contrast, the proposed ANS model
consistently outperforms BiGRU and TRAN by at least 30 absolute percent across all test subsets
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1%t Mathematical Reasoning in General Artificial Intelligence Workshop, ICLR 2021.

1  2: master counting  3: master + and —  6: master X and =+ # Training epochsy
0: None 0:0 0:0 “To:o -
1: None 1: (inc0) 1: (inc0) 1: (inc 0)

2: Nome 2: (inc (inc0)) 2: (inc (inc0)) 2: (inc (inc 0))

9 : None 9: (inc (inc ... (inc0))) 9: (inc (inc ... (inc0))...) 9: (inc (inc ... (inc0))...)

+ : None i None S1 (A (A (Y180 (A (A (A (3£ S0 $1 (82 (inc $1) (dec $0))))))))) | +: (A (A (Y S1$0 (A (A (A (if $0 81 (2 (inc $1) (dec $0)))))))))
— : None — : None —: (A(A(Y$180 (A (A (A (3£ $0 81 (82 (dec $1) (dec 80))))))))) | —: (A (A (¥ $180 (A (A (A (if $0 81 ($2 (dec $1) (dec $0)))))))))
x : None x : None x: (A (X (if $1 81 $0))) X1 (A(A(Y$180 (A (X (A (if $0 0 (+ $1 (82 $1 (dec $0))))))))))
> None = : None © (A (A (if (dec $0) $1 (dec (£ $1 $1 (inc (inc 0))))))) 1 (A(A (Y8180 (A (A (A (£ $10 (inc (52 (— $1 50) $0)))))))))
(: None (: None ( None (: None

) : None ) : None ) : None ) : None

Figure 3: The evolution of semantics in ANS from initial primitives {0, inc, dec, if, Y}.

2~5. This superb performance demonstrates the strong systematic generalization of ANS, including
both interpolation and extrapolation w.r.t. syntax and semantics.

How do models extrapolate? Among the generalization capability, we are particularly interested
in extrapolation. Based on the experimental results, we firmly believe that the key is recursion. In
ANS, the extrapolation on syntax is achieved by the transition system of the dependency parser,
which recursively applies transition actions to parse arbitrarily long expressions. The extrapolation
on semantics is realized by the recursion primitive, i.e., Y-combinator. It allows programs to rep-
resent recursive functions, which can decompose large numbers into smaller ones by recursively
invoking themselves. For BiGRU, although the recurrent structure in its hidden cells serves as a
recursive prior on syntax, no such prior in its representation for semantics. This deficiency explains
why BiGRU would achieve a decent accuracy (40.44%) on the test subset 3 (extrapolation only on
syntax) but a much lower accuracy (6.51%) on the test subset 4 (extrapolation only on semantics).
Taken together, these observations strongly imply that the recursive prior on task-specific represen-
tations is the crux of extrapolation, which is also in line with the recent analysis of Graph Neural
Network, where it successfully extrapolates algorithmic tasks due to the task-specific non-linearities
in the architecture or features (Xu et al., [2020bzal).

4.2  ABLATION STUDY Table 2: Ablation study on ANS. v’indicates that

the ground-truth labels are given during training.
Table 2] shows an ablation study on the pro- ~ Training Setting Test Accuracy (%)

posed ANS model. In general, providing the fer_Sim._Sem. 07vle.;2;“ 89?10 84%29 6(377 68‘.‘19 40?73
ground-truth meaning of concepts can ease v | 8644 0453 0162 8958 7822 7LI8
. . v 80.14 92.51 90.16 71.32 8427 56.27
the learning and lead to higher test accuracy. 8836 9926 97.56 8466 87.65 6537
: v v 97.81 100.00  100.00 96.66 100.00 90.97
Among the three ICVCIS. of Concepts, pe_r?ept_lon v v 95.84 99.60 9823 98.09 91.50 88.20
is the hardest to learn since the handwriting im- v v | 8893 9430 9219 9006 8299 8088

ages possess a large variance in terms of the visual appearance. The syntax and semantics are rel-
atively easier to learn, since the recursive prior of the transition-based dependency parser and Y-
combinator fits the task well.

Fig. [B]illustrates the typical pattern of the evolution of semantics in ANS. This pattern is highly in
accord with how children learn arithmetic in developmental psychology (Carpenter et al., [1999):
The model first masters the semantics of digits as counting, then learns + and — as recursive
counting, and finally it figures out how to define x and - based on the learned programs for + and
—. Crucially, x and =+ are impossible to be correctly learned before mastering + and —. The model
is endowed with such an incremental learning capability since the program induction module allows
the semantics of concepts to be built compositionally from those learned earlier (Ellis et al., [2020).

4.3 FEW-SHOT CONCEPT LEARNING Table 3: Few-shot concept learning with ANS.
Test Accuracy (%)
2 3

Per. Syn. Sem. Overall 1

1 max(z,y) 64.08 7091 81.98 70.79 50.56 40.66
1 min(z, y) 7245 8545 8393 81.82 6591 40.22
e : . =2 y 2 (a+y)/2 | 5673 7636 7009 61.80 41.94 27.47
tial in learning new concepts with limited ex- ¢¢ 2 ay—(zty) | 5440 7636 6881 4135 5604 22.09

. avg. - - 61.92 7727 7620 63.94 53.61 32.61
amples. As shown in Table 3] we define four

new concepts with common semantics. Their visual appearances are denoted by four unseen hand-
written symbols {«, 5,7, ¢}, and their syntax is decided by their precedence (i.e., 1 is for {+, —}
and 2 is for {x, +}). We randomly sample a hundred examples from short to long expressions for
training each new concept and fine-tune the ANS model on the new training data. Table 3] shows the
test accuracy for each new concept. The proposed ANS model obtains a decent performance with an
average overall accuracy of 61.92%. Concepts with more complex semantics ({, ¢}) are generally
harder to learn than those with simpler semantics ({c, 8}).

We further conduct a preliminary study of few- —;
shot learning to demonstrate the ANS’s poten-  #
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A THE HINT DATASET

The data generation process follows the pipeline illustrated in Fig.[ST] The syntax of the infix expres-
sions can be fully described by the context-free grammar depicted in Table[ST} When generating the
HINT dataset, we ensure that (i) all handwritten images in the test set are unseen in training, (ii) at
most 1,000 samples are generated for each number of operators in expressions. In total, the training
and test set includes 11,170 and 48,910 samples, respectively. Subsets in the test set are balanced to
be 23%, 23%, 22%, 16%, and 16%. Fig. visualizes several randomly selected examples from the
proposed HINT dataset.

Prefix x+328 ——53%52 +2x54 operator semantics
+(@,b):a+b
Infix 3+2)x8 5-3-5%2 2+(5x4 !
(3+2) (5x4) —(a, b): max(0, a - b)
HW S+ 045 5% OV 2505 X% ) x(a,b):axb
Results 40 0 1 +(a, b): ceil(a + b)

Figure S1: The data generation pipeline.

Table S1: Context-free grammar for arithmetic expressions.

G=(V,X,R,S)
V= {8, Expression, Term, Factor, Number}
Y= {07 172737475767778797+7_7 X,y =, (7)}
S is the start symbol.
R = {S — Expression
Expression — Term | Expression + Term | Expression - Term
Term — Factor | Term x Factor | Term - Factor
Factor — ( Expression ) | Number
Number — 0|1/2]3...|19 }

B A NEURAL-SYMBOLIC APPROACH

Below we first describe a general framework from a probabilistic perspective for learning the HINT
task as a neural-symbolic approach. This general framework implies a symbol system with combi-
natorial syntactic and semantic structures, initially introduced by (Fodor et al., |1988), as a feasi-
ble representation of the human mind. Such a symbol system provides a principled integration of
perception, syntax, and semantics. Guided by this general framework, we next provide a concrete
instantiation of such a neural-symbolic system and introduce a novel deduction-abduction strategy
to learn it with weak supervision; see Fig. 2| for overview.

B.1 A GENERAL FRAMEWORK

Given a neural-symbolic system, let x € €, denote the input (images of handwritten expression in
the HINT dataset), s € {2, the symbolic expression, pt € 2; the parse tree of the symbolic expression,
et € Q. the execution trace, and y € {2, the output. During learning, (x, y) are observed but (s, pt, et)
are latent. The likelihood of the observation (z, y) marginalized over (s, pt, et) can be decomposed
as:

plylz;©)= > p(s,pt,et, y|a; ©)

s,pt,et

= > p(sla; 0,)p(pt]s; 0.)plet|pt; 0)p(ylet),

s,pt,et

(D

where (i) s|z denotes the process of perceiving symbols from raw signals, guided by the perceptual
model 6, of learned concepts; (ii) pt|s denotes the process of parsing the symbolic expression into
a parse tree, guided by the syntactic model d,; (iii) et|pt denotes the process of reasoning over the
parse tree, guided by the semantic model 6;; and (iv) y|et is a deterministic process: If the final
output of et equals to y, p(y|et) = 1, otherwise 0.
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Figure S2: Randomly selected examples from the training set and each subset of the test set.

From a maximum likelihood prospective, the learning objective is to maximize the observed-data
log likelihood L(x, y) = log p(y|x). Take the derivative of L w.r.t. 6,,

1
Vo L(z,y)=Vy lo z)=—"-=V x
0, L(z,y) =V, log p(yl|z) o) 6,0(ylx)

p(s,pt, et, y|z; ©) 2)
= Vo, log p(s|xz; 6
pztt Do ptr,er PSP et yla; ©) 777 (sl )

:]Es,pt,et~p(s,pt,et\ac,y) [VGP logp(8‘$§ 9;0)]

Similarly, for 6, 8;, we have
VQSL(:Ca y) = ]Es,pt,et'»p(s,pt,eﬂm,y) [vé‘s IOg p(pt|5a 99)] (3)
V@I,L(x7 y) = Es,pt,et~p(s,pt,et|x,y) [VQ, logp(et\pt; el)] (4)

where p(s, pt, et|x, y) is the posterior distribution of (s, pt, et) given (x,y). Since p(y|et) can only
be 0 or 1, p(s, pt, et|x, y) can be rewritten as:

p(57pt7etay‘$7@) _ 07 fOT S,pt,€t¢Q
) =

p(s,pt,et|z;0)
’ / / .
s’ ,pt’ et’ p(s ,pt ) et ) y|CC, © Zslﬁpt/_’et/EQ p(s’,pt’ et |z;0)?

p(s,pt,et|x,y): Z for s,pt,etEQ

4)
where Q = {(s, pt, et) : p(ylet) =1, s€Qs, pt€ Qs et €.} is the set of (s, pt, et) that generates y.
Usually, @ is a very small subset of the entire space of (s, pt, et), i.e., Q S Qg X Q4 X (2, where x
denotes the Cartesian product.

Since taking expectation w.r.t. this posterior distribution is intractable, we use Monte Carlo sam-
pling to approximate it. Therefore, the learning procedure for an example (z, y) can be depicted as
following:

. sample &, pt, et ~ p(s, pt, et|x, y);

. use (z, §) to update the perception model (6,,);

. use (8, pt) to update the parsing model (6,);

. use (pt, et) to update the reasoning model ().

B W N =

B.2 ARITHMETIC NEURAL-SYMBOLIC (ANS) MODEL

The general framework of the desired neural-symbolic system described above is agnostic to the
choice of functions and algorithms. Below we delineate a learnable implementation, named ANS,
capable of learning generalizable concepts in arithmetic on the proposed HINT dataset.

B.2.1 PERCEPTION: NEURAL NETWORK

The role of the perception module is to map a handwritten expression z into a symbolic expression
s. Since disentangling visual symbols from handwritten expressions is trivial in this domailﬂ we

2Perfect disentanglement can be achieved by state-of-the-art unsupervised disentanglement learning meth-
ods (Burgess et al.,[2019; [Locatello et al.| 2020)
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assume the input as a sequence of handwritten images, where each image contains one symbol. We
adopt a standard ResNet-18 (He et al., [2016) as the perception module to map each handwritten
image into a probability distribution over the concept space X. Formally,

p(sle; 0,) = [ [ plwilai; 6,) = [ | sofemax(o(ws, :56,)), (©)

where ¢(s, ; 6,,) is a scoring function parameterized by a Neural Network (NN) with parameters 6,,.
Since learning such an NN from scratch is prohibitively challenging, the ResNet-18 is pre-trained
unsupervisedly (Van Gansbeke et al.,[2020) on unlabeled handwritten images.

B.2.2 SYNTAX: DEPENDENCY PARSING

In our dependency parser, a state ¢ = («, 3, A) consists of a stack «, a buffer (3, and a set of depen-
dency arcs A. The initial state for a sequence s = wow...w,, is a = [Root], f = [wow;...w,], A=
5. A state is regarded as terminal if the buffer is empty and the stack only contains the node Root.
The parse tree can be derived from the dependency arcs A. Let a; denote the i-th top element on
the stack, and (; the i-th element on the buffer. The parser defines three types of transitions between
states:

* LEFT-ARC: add an arc o1 — a3 to A and remove ap from the stack a. Precondition: || = 2.
* RIGHT-ARC: add an arc oy — 1 to A and remove «; from the stack «.. Precondition: |«| > 2.
* SHIFT: move (3; from the buffer 3 to the stack «. Precondition: |3] > 1.

The goal of the parser is to predict a transition sequence from an initial state to a terminal state. As the
parser is greedy, it attempts to predict one transition from 7 = {LEFT-ARC, RIGHT-ARC, SHIFT} at
a time, based on the current state ¢ = («, /3, A). The features for a state ¢ contains following three
elements: (i) The top three words on the stack and buffer: «;, 8;,7 =1, 2, 3; (ii) The first and second
leftmost/rightmost children of the top two words on the stack: lcq (), 7e1 (), lea (o), mea(oy), i =
1, 2; (iii) The leftmost of leftmost/rightmost of rightmost children of the top two words on the stack:
ley(ler(ag)), rer(rer(ay)),i=1,2. We use a special Null token for non-existent elements. Each
element in the state representation is embedded to a d-dimensional vector e € R?, and the full em-
bedding matrix is denoted as E € RI*!*?, where ¥ is the concept space. The embedding vectors for
all elements in the state are concatenated as its representation: ¢ = [e; e3...e, | € R™. Given the state
representation, we adopt a two-layer feed-forward NN to predict a transition.

h=RELU(Wic+by) 7
p=softmax(Wah+bs), ®)

where Wy € R%>nd b, e RIn Wye RITI%dn by e RITI are the weights and bias vectors in the NN
and dj, is the dimension of the hidden layer.

B.2.3 SEMANTICS: PROGRAM SYNTHESIS

The semantics of concepts in HINT, including digits, operators, and parentheses, are all represented
as programs composed from these primitives L = {0, inc,dec, i£, Y}. During inference, these
programs are used for reasoning to obtain the results. The learning for a concept ¢ is to find a
program p. to maximize the following objective:

pe =arg mpaxp(pIDm L) o (Delp) p(p|L), ©)

where D, denotes the input-output pairs of the concept ¢ for program induction, p(D.|p) the like-
lihood of the program p explaining D, and p(p|L) the prior of p under the library L, which de-
fines a generative model over programs. The maximization in Eq. (9) is achieved by a stochastic
search process guided by a neural network, which is trained to approximate the posterior distribu-
tion p(p| De, L).

B.2.4 LEARNING BY DEDUCTION-ABDUCTION
In Appendix we derive a general learning procedure for such a neural-symbolic system. The

key is to perform efficient sampling from the posterior distribution p(s, pt, et|z,y). Algorithm
provides an overview of the proposed learning algorithm. In short, we generalize the back-search
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algorithm in (L1 et al.l 2020a)) to a deduction-abduction strategy to enable efficient sampling from
the posterior distribution of perception, syntax, and semantics.

Deduction For a given example (x,y), we first perform greedy deduction from z to obtain a
candidate solution of a compound tree ct = (z, §, pt, et). This process is likely to produce a wrong
result, thus requiring a separate abduction process to further correct it, detailed below.

Abduction To find a revised solution ct* that can reach the goal y, we search the neighbors of ¢t in
a top-down manner by performing abduction over perception (s), syntax (pt), and semantics (et), as
detailed in Algorithm [2|and illustrated in Fig.[2] Our abduction strategy generalizes the perception-
only, one-step back-search algorithm described in |Li et al.|2020a| to all three levels. The SOLVE
function and the priority used in the top-down search are similarly to the ones in[Li et al.|2020al The
abduction can also be extended to multiple steps, but we only use one step for lower computation
overhead. The above deduction-abduction strategy likely behaves as a Metropolis-Hastings sampler
for the posterior distribution (L1 et al., [2020a)).

Fig.[S3]visualizes a concrete example illustrating the proposed deduction-abduction strategy in ANS.

Algorithm 2: Abduction
1: function ABDUCE(ct, y)
2 Q=PriorityQueue()
3:  Q.push(root(ct), y, 1.0)
4:
5

while 4, y.,p=Q.pop() do
A= (i,w,v,arcs) © (image, symbol, value,

Algorithm 1: Learning by Deduction- arcs)
Abduction 6: if A.v ==y, then
1: Input: Training set D = {(x;,y:):i=1,2,..., N} ; enaeit;lrnA
2: Initial Module: perception 6'1()0), syntax 0%, 9 & Abduce perception
semantics 91(0) 10 for w’' € X do
3: fort«<—0toT do 11 A'=A(w—uw)
4:  Buffer B=9 12 if A’.v ==y, then
5:  for (z,y)e D do 13: Q.push(A’, ya,p(A"))
6: ct = DEDUCE(z, 6,057, 0{) 14: end if
7: ct* = ABDUCE(ct, y) 15: end for
8: B=Bu{ct*} 16 > Abduce syntax
9:  end for 17 for arce arcs do
10: 65D oD oD —jearn(B, 6,689, 6() 18 A’ =rotate(A, arc)
11: end for 19 if A'v== 14 then
12: return 657, 6(", QL(T) 20 Q.push(A’, y4, p(A"))

21 end if

1: function DEDUCE(x, 6, 05, 6;) > d f
2. 1 : end for
sAa:np ° 0 Bt~ p(ptls:0.). et = F(pt: ;) 23 > Abduce semantics
S p(S|ZL‘, P)?p Ap(Ap ‘87 S)ae f(p ) l) 24: A/_A(’U—>yA)
3:  return ct = (z, 3, pt, et) : L /
. : TR 25: Q-push(A’, ya, p(A"))
4: end function 26 & Top-down search
27: for B e children(A) do
28: yB = SOLVE(B, A, y4|6:(A.w))
29: Q.push(B, y5, p(B))
30: end for

31:  end while
32: end function

C EXPERIMENTAL SETUP

Models Both the ResNet-18 and the dependency parser in the proposed ANS model are trained
by an Adam optimizer (Kingma & Bal 2015)) with a learning rate of 10~* and a batch size of 512.
The ResNet-18 is pre-trained unsupervisedly (Van Gansbeke et al., [2020) on unlabeled handwritten
images extracted from the training set. In the dependency parser, the token embeddings have a
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Figure S3: An illustration of the deduction-abduction strategy in ANS. Given a handwritten ex-
pression, the system first performs a greedy deduction to propose an initial solution, which generates
a wrong result. In abduction, the root node, paired with the ground-truth result, is first pushed to the
priority queue. The abduction over perception, syntax, and semantics is performed on the popped
node to generate possible revisions. A top-down search is also applied to propagate the expected
value to its children. All possible revisions are then pushed into the priority queue. This process is
repeated until we find the most likely revision for the initial solution.

dimension of 50, and the hidden dimension of the transition classifier is 200. The program synthesis
module is adapted from DreamCodelﬂ The three modules of ANS are jointly trained.

For end-to-end NN baselines, the task of HINT is formulated as a sequence-to-sequence problem:
The input is an expression sequence, and the output is a sequence of digits, which is then converted
to an integer as the predicted result. We test two popular seq2seq models: (1) BiGRU: the encoder
is a bi-directional GRU (Chung et al., [2014) with three layers, and the decoder is a one-layer GRU,
the token embeddings have a dimension of 128, and the hidden dimensions for the encoder and
decoder are 128 and 256, respectively; (2) TRAN: a Transformer model (Vaswani et al., 2017) with
three encoder-layers, three decoder-layers, and four attention heads for each layer, and the hidden
dimension is 128. Before being fed into these models, the handwritten expressions are processed by
the same ResNet-18 used in ANS. We test models with varied numbers of layers and report ones
with the best results.

Training All models are trained for 100 epochs. To speed up the convergence, the training is
guided by a simple curriculum from short expressions to long ones:

. Epoch 0 ~ 20: max length =3

. Epoch 20 ~ 40: max length =7

. Epoch 40 ~ 60: max length = 11

. Epoch 60 ~ 80: max length = 15
. Epoch 80 ~ 100: max length = o0

DN AW =

Evaluation Metric We evaluate the models with the accuracy of final results. Note that a predicted
result is considered correct when it exactly equals to the ground-truth.

Qualitative Examples Fig.[S4]shows several examples of the ANS predictions on each test subset.

Shttps://github.com/ellisk42/ec
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Figure S4: Examples of ANS predictions on the test set. “GT” and “PD” denote “ground-truth”
and “prediction,” respectively. Each node in the solution tree is a tuple of (symbol, value). Please
check the attached codebase for more examples.

D RELATED WORK

D.1 THREE LEVELS OF CONCEPT LEARNING

The surge of deep neural networks (LeCun et al},[2015)) in the last decade has significantly advanced
the accuracy of perception learning from raw signals across multiple modalities, such as image
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classification from image pixels (He et al.| 2016} [Krizhevsky et al., 2012)) and automatic speech
recognition from audio waveforms (Park et al.,|2019} |Hinton et al., 2012; |Graves et al., 2013).

The goal of syntax analysis is to understand the compositional and recursive structures in various
tasks, such as natural language parsing (Chen & Manning| 2014} Kitaev & Klein, 2018)), image and
video parsing (Tu et al., 2005} [Zhu et al.| |2007; [Zhao & Zhu, 2011} |Gupta et al., |2009; [Q1 et al.,
2018a; Jia et al., 2020), scene understanding (Huang et al., 2018bga; |Q1 et al., |2018b; [Jiang et al.
2018 |Chen et al.| 2019} Yuan et al.| [2020), task planning (Xie et al., 2018} |Liu et al.,[2018; [Edmonds
et al, 2019; |[Liu et al.l [2019; [Zhang et al., 2020b), and abstract reasoning (Zhang et al., [2019aib;
2020a)). There exist two major structural types: constituency structures (Kitaev & Klein, 2018)) and
dependency structures (Chen & Manning} |2014)). Constituency structures use phrase structure gram-
mar to organize input tokens into nested constituents, whereas dependency structures show which
tokens depend on which other tokens.

Semantics of concepts essentially describe its causal effect. There are two primary semantic rep-
resentations in symbolic reasoning. The first is logic (Lloyd, |2012; |Manhaeve et al.| 2018), which
regards the semantic learning as inductive logic programming (Muggleton & De Raedt, |1994} Evans
& Grefenstette, 2018)—a general framework to induce first-order logic theory from examples. The
other representation is program, which treats the semantic learning as inductive program synthesis
(Kulkarni et al.| 2015 |Lake et al.|[2015; Balog et al., 2017 Devlin et al., 2017} Ellis et al.| | 2018ajb).
Recently, [Ellis et al.| (2020) release a neural-guided program induction system, DreamCoder, which
can efficiently discover interpretable, reusable, and generalizable knowledge across a wide range of
domains.

However, aforementioned literature tackles only one or two levels of concept learning and usually
requires direct supervision on model outputs. In contrast, in this paper we offer a more holistic
perspective that addresses all three levels of concept learning, i.e., perception, syntax, and semantics,
taking one step closer to realize a versatile mechanism of concept learning under weak supervision.
The design of three-level concept learning echoes a newly proposed challenge, HALMA, by Xie
et al.|(2021), but with a focus on perception instead of interaction with the environments.

D.2 SYSTEMATIC GENERALIZATION

The central question in systematic generalization is: How well can a learning agent perform in un-
seen scenarios given limited exposure to the underlying configurations (Grenander, [1993)? This
question is also connected to the Language of Thought Hypothesis (Fodor, [1975)): The systematic-
ity, productivity, and inferential coherence characterize compositional generalization of concepts
(Lake et al.| 2015). As a prevailing property of human cognition, systematicity poses a central ar-
gument against connectionist models (Fodor et al., |[1988). Recently, there have been several works
to explore the systematic generalization of deep neural networks in different tasks (Lake & Baroni,
2018; Bahdanau et al., 2018} |[Keysers et al.l [2019; |Gordon et al., [2019; Xie et al.l|2021). By going
beyond traditional i.i.d. train/test split, the proposed HINT benchmark well-captures the character-
istics of systematic generalization across different aspects of concepts w.r.t. perception, syntax, and
semantics.

D.3 NEURAL-SYMBOLIC INTEGRATION

Researchers have proposed to combine statistical learning and symbolic reasoning, with pioneer
efforts devoted to different directions, including representation learning and reasoning (Sun| [1994;
Garcez et al.| 2008; [Manhaeve et al., |2018)), abductive learning (Li et al., [2020a} [Dai et al., 2019
Zhou, 2019), knowledge abstraction (Hinton et al.l |2006; [Bader et al.| [2009), etc. There also have
been recent works on the application of neural-symbolic methods, such as neural-symbolic visual
reasoning and program synthesis (Yi et al.,[2018; Mao et al., 2018 [Li et al., 2020b; [Parisotto et al.,
2016), semantic parsing (Liang et al., 2016} [Yin et al., [2018), and math word problems (Lample
& Charton, [2020; [Lee et al., [2020). Current neural-symbolic approaches often require a perfect
domain-specific language, including both the syntax and semantics of the targeted domain. In com-
parison, the proposed model relaxes such a strict requirement and enables the learning of syntax and
semantics.
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E DIScuUsSION: CONTRIBUTIONS AND LIMITATIONS

In this paper, we take inspiration from how humans learn arithmetic and present a new challenge
for the machine learning community, HINT, which serves as a minimal yet complete benchmark
towards studying systematic generalization of concepts w.r.t. perception, syntax, and semantics. Ad-
ditionally, we propose a neural-symbolic system, Arithmetic Neural-Symbolic (ANS), to approach
this challenge. ANS integrates recent efforts from the disciplines of neural networks, grammar pars-
ing, and program synthesis. One potential future work is to extend our model to other domains and
applications.

Extending to other domains. To extend our model to other domains with varieties of semantics,
such as visual reasoning (Johnson et al., [2017; [Hudson & Manning|, [2019) and question answer-
ing (Rajpurkar et al.l |2016), we may consider to inject contexts into the semantics of concepts and
capture their inherent stochastic nature with probabilistic programs (Ghahramani, 2015}, |Carpenter
et al.,[2017;|Ge et al.}2018; Bingham et al.,[2019} [Holtzen et al., [2020).
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