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ABSTRACT

We study the machine’s understanding of embodied reference: One agent uses
both language and gesture to refer to an object to another agent in a shared physi-
cal environment. Of note, this new visual task requires understanding multimodal
information with visual perspective-taking to identify which object is being re-
ferred to. To tackle this problem, we introduce YouRefIt, a new crowd-sourced,
large-scale real-world dataset of embodied reference; the dataset contains 4,195
unique reference clips in 432 indoor scenes. To the best of our knowledge, this is
the first embodied reference dataset that affords us to study referring expressions
in real-world scenes for understanding referential behavior, human communica-
tions, and human-robot interaction. We further devise two benchmarks for image-
based and video-based embodied reference understanding. Our results provide
overwhelming evidence that gestural information is as critical as language infor-
mation in understanding the embodied reference, indicating the significance of
incorporating gestures for visual scene understanding.

1 INTRODUCTION

Human communication (Tomasello, 2010) relies heavily on establishing common ground by refer-
ring to objects in a shared environment. This process usually takes place in two forms: language
(abstract symbolic code) and gesture (unconventionalized and uncoded). In the computer vision
community, efforts of understanding reference have been primarily devoted in the first form through
an artificial task, Referring Expression Comprehension (REF) (Yu et al., 2016; Hu et al., 2017; Yu
et al., 2018b; Liu et al., 2019b; Ye et al., 2019; Yang et al., 2019a; 2020a), but the second form,
gesture, has been left almost untouched.

Fundamentally, all existing works deviate from the natural setting of reference understanding in
daily scenes, which is embodied: An agent refers an object to another in a shared physical space,
as exemplified by Fig. 1. Embodied reference possesses two distinctive characteristics compared to
REF. First, it is multimodal. People often use both natural language and gestures when referring
to an object. Second, recognizing embodied reference requires visual perspective-taking (Krauss
& Fussell, 1991; Batson et al., 1997), the awareness that others see things from different viewpoints
and the ability to imagine what others see from their perspectives. To address the deficiencies in prior
works and study reference understanding at a full spectrum, we introduce a large-scale real-world
and crowd-sourced dataset, YouRefIt, for embodied reference understanding. For each reference
clip, we annotate the reference target (object) with a bounding box. We also identify canonical
frames in a clip: They are the “keyframes” of the clip and contain sufficient information of the
scene, human gestures, and referenced objects that can truthfully represent the reference instance.

To measure the machine’s ability in Embodied Reference Understanding (ERU), we devise two
tasks based on the proposed YouReflt dataset. (i) Image ERU takes a canonical frame and the
transcribed sentence of the reference instance within as the inputs, and predicts the bounding box
of the referenced object. (ii) Video ERU takes the video clip and the sentence as the input, and
identifies the canonical frames and locates the reference target within the clip. Incorporating both
gestural and language cues, we formulate a new multimodal framework to tackle the ERU tasks.
In experiments, we provide multiple baselines and ablations. Our results reveal that models with
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-v‘ Task: Refer to an object in the scene to an imagined person (camera)

oteps:

1. Refer to one object using both pointing gesture and language.

2. After the reference, tap the target object to confirm.

3. Repeat until no more objects.

4. Write down the sentences in the same order as during the recording.
5. Submit both the videos and sentences.
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Figure 1: A daily deictic-interaction scenario that illustrates Figure 2: Dataset collection procedure. Par-
the significance of multimodal communication and visual ticipants were asked to film the a series of ref-
perspective-taking in embodied reference. erence tasks following the instructions.

explicit gestural information yield better performance, validating our hypothesis that gesture is as
critical as language information in resolving ambiguities in the embodied reference and facilitating
successful communication with cooperation. We further verify that temporal information is essential
in canonical frame detection, necessitating the understanding of embodied reference in dynamic and
natural sequences.

2 THE YouReflt DATASET

To study the embodied reference understanding, we introduce a new dataset YouRefTt, a large-scale
video collection of people referring to objects with both language and gesture in indoor scenes.

2.1 DATA COLLECTION

Our dataset was collected via Amazon Mechanic Turk (AMT); see the illustration of the data col-
lection process in Fig. 2. Workers were asked to record a video containing actions of referring to
objects in the scene to an imagined person (camera) using both sentences and pointing gestures.
Most videos were collected in indoor scenes, such as offices, kitchens, and living rooms.

2.2 DATA ANNOTATION

The annotation process takes two stages: (i) annotation of temporal segments, canonical frames, and
referent bounding boxes, and (ii) annotation of sentence parsing.

Since each collected video consists of multiple reference actions, we first segment the video into
clips; each contains an exact one reference action. A segment is defined from the start of gesture
movement or utterance to the end of the reference, which typically includes the raise of hand and
arm, pointing action, and reset process, synchronized with language description. In each segment,
the annotators were asked to further annotate the canonical frames, which contain the “keyframes”
that the referrer holds the steady pose to clearly indicate what is being referred. Combined with
natural language, it is sufficient to use any canonical frame to localize the referred target. The
participants were instructed to tap the referred objects after each reference action. Using this infor-
mation, bounding box of the referred object were annotated using Vatic (Vondrick et al., 2013), and
the tapping actions were discarded. The object color and material were also annotated if identifi-
able. The taxonomy of object color and material is adopted from Visual Genome dataset (Krishna
et al., 2017). Given the sentence provided by the participants who performed reference actions,
AMT annotators were asked to refine the sentence further and ensure it matches the raw audio col-
lected from the video. We further provided more fine-grained sentence parsing results for natural
language understanding. AMT annotators annotated target, target-attribute, spatial-relation, and
comparative-relation.
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Figure 3: The proposed multimodal framework for the ERU task that incorporates both language and gestural
information.

2.3 DATASET STATISTICS

In total, YouRefIt includes 432 recorded videos and 4,195 localized reference clips for 395 object
categories. We retrieved 8.83 hours of video during the post-processing and annotated 497,348
frames. The total duration of all the reference actions is 3.35 hours, with an average duration of
2.81 seconds per reference. Each reference process was annotated with segments, canonical frames,
bounding boxes of the referred objects, and the sentences with semantic parsing. All videos were
collected with synchronized audio.

3  EMBODIED REFERENCE UNDERSTANDING (ERU)

3.1 IMAGE ERU

Given the canonical frame and sentence from an embodied reference instance, Image ERU aims
at locating the referred object in the image through the human gesture and language information.
We use accuracy similar to Mao et al. (2016) as the evaluation metric. Following object detection
benchmark (Geiger et al., 2012), we report the results under three Intersection over Union (IoU)s:
0.25, 0.5, and 0.75 with various object sizes, i.e., all small, medium and large.

Methods We devise a novel multimodal framework for Image ERU that leverages both the lan-
guage and gestural information; see Fig. 3. At a high-level, our framework includes both the visual
and language encoder, similar to prior REF models (Yang et al., 2019b; 2020b; Luo et al., 2020).
We also explicitly incorporate two types of gesture features: (i) the Part Affinity Field (PAF) (Cao
et al., 2019) heatmap, and (ii) the pointing saliency heatmap following Kroner et al. (2020). We
utilize the features from three modalities to effectively predict the target bounding box.

Results and Discussion Table 1 tabulates the quantitative results of the Image ERU. We catego-
rize the models based on their information sources: Language-only, Gesture-only, and Language +
Gesture. Below, we summarize some key findings.

First, gestural information is essential for embodied reference understanding. From Table 1, we can
see that FAOA and ReSC models show significant performance improvement when trained on the
original YouRefIt dataset compared with trained on the inpainted version, where humans are masked
by He et al. (2017) and inpainted by DeepFill (Yu et al., 2018a).

Second, language information eases ambiguities that cannot be fully resolved by the gesture. As
shown by the Gesture-only models, RPN+heatmap models suffer from the ambiguities of gestural
information; pointing gestures are used to suppress descriptions of target location and focus attention
on a spatial region but not object-centric. Performance of Ours,,, ;414 also deteriorates compared to
Ours gy if no referring expression is provided.

Third, explicit gestural features are beneficial for understanding embodied reference. Oursp Ar _oniy.
which incorporates PAF features outperforms the origin FAOA and ReSC models. By further adding
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the saliency heatmap, our full model Oursg,;; achieves the best performance in all baselines and
ablation. Taken together, these results indicate that the fusion of the extracted information from
language and gesture could be the crucial ingredient.

Table 1: Comparisons of Image ERU performances on YouRefIt.

Model ToU=0.25 ToU=0.5 ToU=0.75

all small medium large all small medium large all small medium large
Language-only
MAUNetrctrain 14.2 2.3 4.1 34.7 12.2 24 3.8 29.2 9.1 1.0 22 23.1
FAOA, ctrain 15.9 2.1 9.5 344 11.7 1.0 54 27.3 5.1 0.0 0.0 14.1
FAOA, 234 14.2 23.6 32.1 16.4 9.0 17.9 225 4.1 1.4 4.7 6.2
ReSC, 20.8 35 17.5 40.0 16.3 0.5 14.8 36.7 7.6 0.0 43 17.5
ReSCiyp 343 20.3 389 44.0 25.7 8.1 324 36.5 9.1 1.1 10.1 16.0
Gesture-only
RPN+Pointing5 15.3 10.5 16.9 183 10.2 72 12.4 11.0 6.5 38 9.1 6.6
RPN+Pointingsy 14.7 10.8 17.0 16.4 9.8 74 12.4 9.8 6.5 38 8.9 6.8
RPN+SaliencyKroner et al. (2020) 279 29.4 34.7 20.3 20.1 21.1 26.8 132 122 10.3 17.9 8.6
OUrS 0 1ang 414 29.9 483 46.3 30.6 174 37.0 374 10.8 17 139 16.6
Language + Gesture
FAOAYang et al. (2019b) 44.5 30.6 48.6 54.1 30.4 15.8 36.2 39.3 8.5 1.4 9.6 14.4
ReSCYang et al. (2020b) 50.4 354 59.0 56.8 37.3 17.0 48.4 46.8 12.6 1.7 16.4 18.7
OurspAr_onty 533 393 61.1 61.9 40.1 21.8 50.4 52.1 13.4 1.9 19.1 21.0
Ours 1 55.1 42°.7 60.8 62.5 42.1 23.9 50.3 54.0 144 2.6 193 234
Human 942402 93.7+£0.0 92.3+1.3 96.3+1.7 858+14 81.0+22 86.7+1.9 89.4+1.7 533+49 339+47.1 559+64 68.1+3.0

3.2 VIDEO ERU

Compared with Image ERU, Video ERU is a more natural and practical setting in human-robot
interaction. Given a referring expression and a video clip that captures the whole dynamics of a
reference action with consecutive body movement, Video ERU aims at recognizing the canonical
frames and estimate the referred target. For each reference instance, we sample image frames with
5 FPS from the original video clip. Average precision, recall, and F1-score are reported for the
canonical frame detection. For referred bounding box prediction, we report the averaged accuracy
in all canonical frames.

Table 2: Video ERU performance comparisons on YouReflt.
IoU=0.25 IoU=0.5 IoU=0.75
all ~ small medium large all  small medium large all  small medium large

Frame-based 55.2 423 58.9 648 417 227 534 488 169 1.6 21.8 27.0
Transformer 52.3  40.2 55.6 583 388 212 54.1 471 139 15 20.8 227
ConvLSTM  54.8 43.1 57.5 60.0 393 225 54.8 467 17.3 1.8 24.3 25.5

Ours gy 55.1 427 60.8 62.5 421 239 50.3 540 144 26 19.3 234

Model

Results and Discussion Table 2 shows quantitative results of predicting reference targets with
the ground-truth canonical frames of the video. On the one hand, we observe that the frame-based
method and the temporal optimization methods reach similar performance, comparable to the model
that only trained on selected canonical frames (i.e., Oursg,,;;). It shows the canonical frames can
provide sufficient gestural and language information for clear reference, and the temporal models
may be distracted from non-canonical frames. On the other hand, as shown in Table 3, temporal in-
formation can greatly improve performance on canonical frame detection since both the ConvLSTM
and the Transformer model outperform the Frame-based method by a large margin. These results
indicate the importance of distinguishing different stages of reference behaviors, e.g., initiation,
canonical moment and ending, for better efficacy in embodied reference understanding.

Table 3: Canonical frame detection performance.

Method Avg. Prec  Avg. Rec Avg. Fl
Frame-based 31.9 37.7 34.5
Transformer 35.1 44.2 39.1
ConvLSTM 57.0 37.9 454

4 CONCLUSION AND FUTURE WORK

In this work, we study the reference understanding in an embodied manner, which we argue is a
more natural way for understanding human communication with both language and gesture. To ex-
plore this problem, we crowd-source a large-scale, real-world video dataset YouRefIt and devise two
benchmarks at both the image and video levels. We also propose a multimodal learning framework
and conduct extensive experiments on YouReflt. The experimental results provide strong empirical
evidence that language and gesture coordination is critical for embodied reference understanding
and human communication.
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A RELATED WORK

Our work is related to two topics: (i) Referring Expression Comprehension (REF) studied in the con-
text of Vision and Language, and (ii) reference recognition in the field of Human-Robot Interaction.
Below, we compare our work with prior arts with a focus on these two topics.

A.1 REFERRING EXPRESSION COMPREHENSION (REF)

REF is a visual grounding task. Given a natural language expression, it requires an algorithm to
locate a particular object in a scene. Several datasets (Kazemzadeh et al., 2014; Yu et al., 2016; Mao
etal., 2016; Plummer et al., 2015; De Vries et al., 2017; Chen et al., 2020) have been constructed by
asking annotators to provide expressions describing regions of images. Recently, Liu et al. Liu et al.
(2019a) build a synthetic REF dataset by synthesizing both images and complex queries. To solve
REF, researchers have attempted various approaches (Ye et al., 2019; Liu et al., 2019b; Yang et al.,
2019a; 2020a). Representative methods include (i) localizing a region by reconstructing the sentence
using an attention mechanism (Rohrbach et al., 2016), (ii) incorporating contextual information to
grounding referring expressions (Zhang et al., 2018; Yu et al., 2016), (iii) using neural modular
networks to better capture the structured semantics in sentences (Hu et al., 2017; Yu et al., 2018b),
and (iv) devising a one-stage approach (Yang et al., 2019b; 2020b).

Our work fundamentally differs from REF at two levels.

Task-level REF primarily focuses on building correspondence between visual signals and natural
language. In comparison, the proposed ERU task mimics the minimal human communication pro-
cess in an embodied manner, which requires a mutual understanding of both verbal and nonverbal
messages signaled by the sender. Recognizing reference in an embodied setting also introduces new
challenges, such as visual perspective-taking (Galinsky et al., 2008): The referrers need to consider
the perception from the counterpart’s perspective for effective verbal and nonverbal communication,
requiring a more holistic visual scene understanding both geometrically and semantically. In this
paper, to study the reference understanding that echoes the above characteristics, we collect a new
dataset containing natural reference scenarios with both language and gestures.
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Model-level Since previous REF approaches only capable of comprehending communicative mes-
sages in natural language and completely ignore the gestural information, it is insufficient in the ERU
setting or to apply on our newly collected dataset. To tackle this deficiency, we design a new prin-
cipled framework to combine natural language and gestures by a multimodal fusion module. The
proposed framework outperforms prior methods by a large margin, verifying the significant role of
the gestural cue in addition to the language cue in embodied reference understanding.

A.2 REFERENCE IN HUMAN-ROBOT INTERACTION

The combination of visual and verbal communication for reference is one of the central topics in
Human-Robot Interaction. Compared with REF, this line of work focuses on more natural set-
tings but with limited and specialized scenarios. Some works emphasize pointing direction and
thus are not object-centric while missing language reference: The Innsbruck Pointing at Objects
dataset (Shukla et al., 2015) investigates two types of pointing gestures with index finger and
tool, and the Innsbruck Multi-View Hand Gesture Dataset (Shukla et al., 2016) records hand ges-
tures in the context of human-robot interaction in close proximity. The most relevant works are
ReferAt (Schauerte & Fink, 2010) and PointAt (Schauerte et al., 2010), where participants are tasked
to point at various objects with or without linguistic expressions. Some other notable works include
(i) a robotics system that allows users to combine natural language and pointing gestures to refer to
objects on a display (Kobsa et al., 1986), (ii) experiments that investigate the semantics and pragmat-
ics of co-verbal pointing through computer simulation (Liicking et al., 2015), (iii) deictic interaction
with a robot when referring to a region using pointing and spatial deixis (Hato et al., 2010), and
(iv) effects of various referential strategies, including talk-gesture-coordination and handshape, for
robots interacting with humans when guiding attentions in museums (Pitsch & Wrede, 2014).

Although related, the above literature is constrained in lab settings with limited sizes, scenarios, and
expressions, thus insufficient for solving the real-world reference understanding with both vision and
language. In comparison, crowd-sourced by AMT, our dataset is much more diverse in environment
setting, scene appearance, and language usage. Our dataset also collects videos instead of static
images commonly used in prior datasets, opening new venues to study dynamic and evolutionary
patterns that occurred during human communications.

B METHOD DETAILS

We devise a novel multimodal framework for Image ERU that leverages both the language and ges-
tural information; see Fig. 3. At a high-level, our framework includes both the visual and language
encoder, similar to prior REF models (Yang et al., 2019b; 2020b; Luo et al., 2020), as well as explic-
itly extracted gesture features. We utilize the features from three modalities to effectively predict
the target bounding box.

Specifically, we use Darknet-53 (Redmon & Farhadi, 2018) pre-trained on COCO object detec-
tion Lin et al. (2014) as the visual encoder. The textual encoder is the uncased base version of
BERT (Devlin et al., 2018) followed by two fully connected layers. We incorporate two types of
gesture features: (i) the PAF (Cao et al., 2019) heatmap, and (ii) the pointing saliency heatmap. In-
spired by visual saliency prediction, we train MSI-Net (Kroner et al., 2020) on the YouRefIt dataset
to predict the salient regions by considering both the latent scene structure and the gestural informa-
tion, generating more accurate guidance compared with commonly used Region of Interests (Rols).
Fig. 4 shows some examples of predicted salient regions. We aggregate the visual feature and PAF
heatmaps by max-pooling and concatenation, later further fused with textual features by a sub-query
module (Yang et al., 2020b). The saliency map is directly used to refine the anchor box confidence
score; we use the same classification and regression loss as described in Yang et al. (2019b) for
anchor-based bounding box prediction.
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Figure 4: Qualitative results in Image ERU of representative models with various information sources

and pointing saliency map. Green/red boxes are the predicted/grounth-truth reference targets. Sentences used
during the references are shown at the top-left corner.

Figure 5: Qualitative results in Video ERU of the ConvLSTM model. Each row represents four selected
frames from one reference clip. Green / red boxes indicate the predicted / grounth-truth reference targets. 0
means non-canonical frame and 1 means canonical frame.



