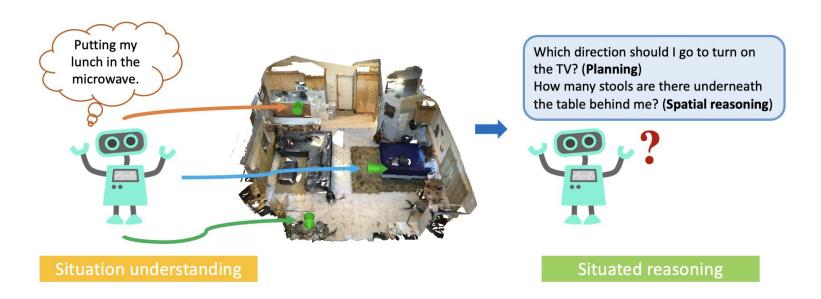
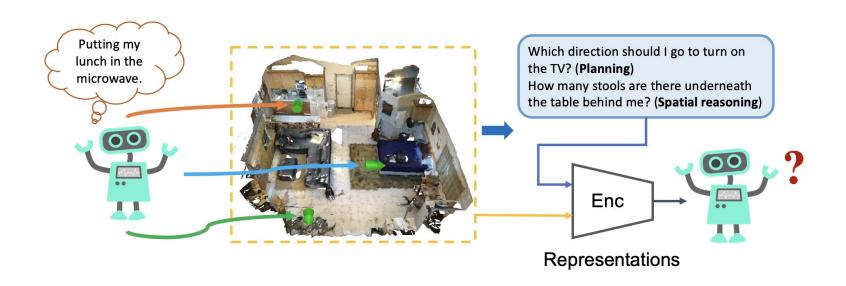


SQA3D: Situated Question Answering in 3D Scenes

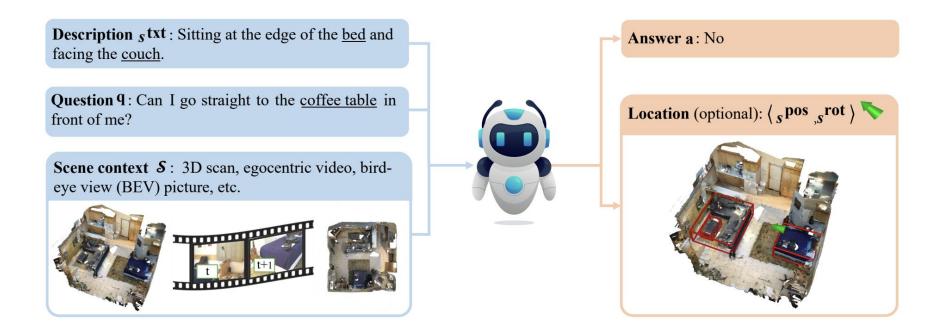
Xiaojian Ma *1,2, Silong Yong *1,3, Zilong Zheng ¹, Qing Li ¹, Yitao Liang ^{1,4}, Song-Chun Zhu ^{1,2,3,4}, Siyuan Huang ¹

¹BIGAI ²UCLA ³Tsinghua University ⁴Peking University *Equal contribution ICLR 2023 arxiv.org/abs/2210.07474




Motivation

We study the problem of **embodied scene understanding** to bridge the gap between *embodied AI* and 3D *scene understanding*: an agent need to understand its surroundings (situations) from a *dynamic & egocentric* view, then accomplish reasoning & planning tasks *accordingly* (situated reasoning).



Motivation

We believe, truly **generalist representations** should support such challenging **situation understanding** and **situated reasoning** in **embodied**, **3D** scenes.

What is SQA3D?

Given a **scene context** (3D scan, egocentric video, BEV pictures...), the agent needs to understand its situation from a **description**, then answer a **question**.

Examples from SQA3D

Embodied activities

s^{txt}: Standing in front of the sink and facing the towels. q: Can I see myself in the

mirror?

a: No

Navigation

stxt: Working by the desk and the window is on my right.

q: How many chairs will I pass by to open the window from other side of the desk?

a: Three

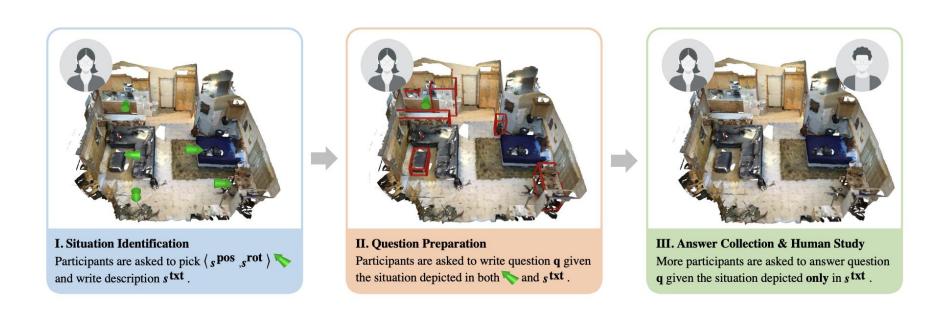
Common sense

s^{txt}: Just looking for some food in the fridge.

q: Which direction should I go to heat my lunch?

a: Right

Multi-hop reasoning

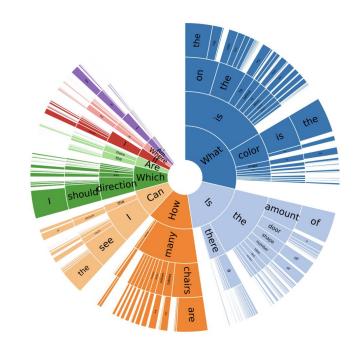

s^{txt}: Playing computer games and the window is on my right.

q: How many monitors are there on the desk that the chair on my left is facing?

a: One

The green boxes indicate relevant objects in situation description while red boxes are for the questions. The virtual avatar marks the actual location of the agent.

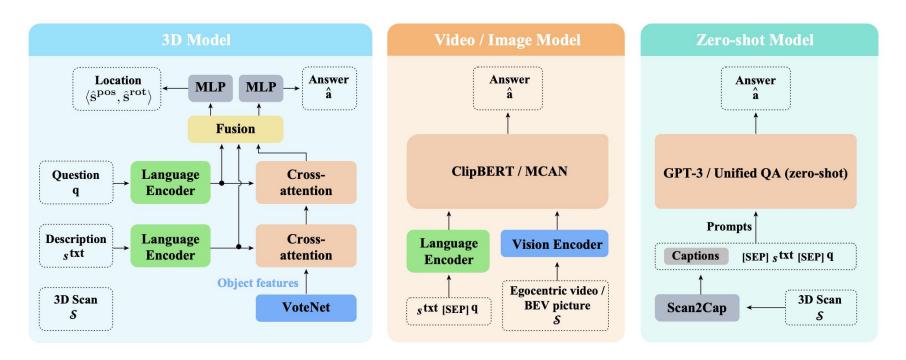
Building SQA3D



We recruit our workforces from Amazon Mechanical Turk (AMT). A multi-staged collection strategy is adopted to ensure manageable workload and higher data quality.

Dataset statistics

Statistic	Value
Total s^{txt} (train/val/test)	16,229/1,997/2,143
Total q (train/val/test)	26,623/3,261/3,519
Unique q (train/val/test)	20,183/2,872/3,036
Total scenes (train/val/test) Total objects (train/val/test)	518/65/67 11,723/1,550/1,652
Average s^{txt} length	17.49
Average q length	10.49


Compared to counterparts with template-based text, SQA3D offers more **diverse** questions thanks to our AMT workforces.

Comparison to related benchmarks

dataset	task	situated?	3D type	text collection	navi- gation?	common sense?	multi-hop reasoning?	#scenes	#tasks
ScanNet (Dai et al., 2017)	seg.	X	scan	n/a	X	X	X	800 rooms	1.5k
ScanRefer (Chen et al., 2020) ReferIt3D (Achlioptas et al., 2020)	det.	×	scan scan	human human	×	×	×	800 rooms 707 rooms	52k 41k
ScanQA (Azuma et al., 2022) 3D-QA (Ye et al., 2021) CLEVR3D (Yan et al., 2021)	q.a. q.a. q.a.	X X	scan scan scan	template human template	X X X	X X X	×	800 rooms 806 rooms 478 rooms	41k 5.8k 60k
MP3D-R2R (Anderson et al., 2018) MP3D-EQA (Wijmans et al., 2019a)	nav. q.a.	1	*nav. *nav.	human template	1	×	×	190 floors 146 floors	22k 1.1k
SQA3D (Ours)	q.a.	1	scan	human	/	1	✓	650 rooms	33.4k

To the best of our knowledge, SQA3D is the **largest** dataset combines the best of both worlds: **situated reasoning**, **human-written text**, and **diverse & challenging problems**.

Models for SQA3D?

Canonical question answering models for 3D scan, video and image input are evaluated. We further explore **zero-shot large models** (GPT-3, Unified QA) by converting the 3D scene into *captions*.

	S	Format	What	Is	tes How	st set Can	Which	Others	Avg.
Blind test	-	SQ→A	8 6 6568		43.44		37.89	43.41	43.65
ScanQA (w/o s ^{txt}) ScanQA ScanQA + aux. task	3D scan 3D scan 3D scan	$\begin{array}{c} VQ{\rightarrow}A\\ VSQ{\rightarrow}A\\ VSQ{\rightarrow}AL \end{array}$	31.64	63.80	47.31 46.02 42.37	69.53	43.87 43.87 43.02	42.88 45.34 46.40	45.27 46.58 47.20
MCAN ClipBERT	BEV Ego. video	$\begin{matrix} VSQ{\rightarrow}A \\ VSQ{\rightarrow}A \end{matrix}$			44.09 38.71	68.34 63.31	40.74 42.45	40.46 42.71	43.42 43.31
Unified QA _{Large} Unified QA _{Large} GPT-3 GPT-3	ScanRefer ReferIt3D ScanRefer ReferIt3D	$\begin{array}{c} VSQ{\rightarrow}A \\ VSQ{\rightarrow}A \\ VSQ{\rightarrow}A \\ VSQ{\rightarrow}A \end{array}$	27.58 39.67	47.99 45.99	31.91 34.05 40.47 28.05	59.47 45.56	45.17 40.91 36.08 30.11	41.11 39.77 38.42 36.07	41.00 38.71 41.00 34.57
Human (amateur)	3D scan	$VSQ \rightarrow A$	88.53	93.84	88.44	95.27	87.22	88.57	90.06

^{*}aux. task: we introduce an additional location prediction task to encourage better situation understanding.

	C	F			tes	st set			A
	$\mathcal S$	\mathcal{S} Format	What	Is	How	Can	Which	Others	Avg.
Blind test	-	SQ→A	26.75	63.34	43.44	69.53	37.89	43.41	43.65
ScanQA (w/o s ^{txt}) ScanQA ScanQA + aux. task	3D scan 3D scan 3D scan	$VQ \rightarrow A$ $VSQ \rightarrow A$ $VSQ \rightarrow AL$	31.64	63.80	47.31 46.02	69.53	43.87 43.87 43.02	42.88 45.34 46.40	45.27 46.58 47.20
MCAN	BEV	VSO→AL VSO→A						40.46	43.42
Situation understanding		1700 A						esults	43.31
GPT-3 GPT-3	ScanRefer ReferIt3D		39.67 28.90		40.47 28.05				

^{*}aux. task: we introduce an additional location prediction task to encourage better situation understanding.

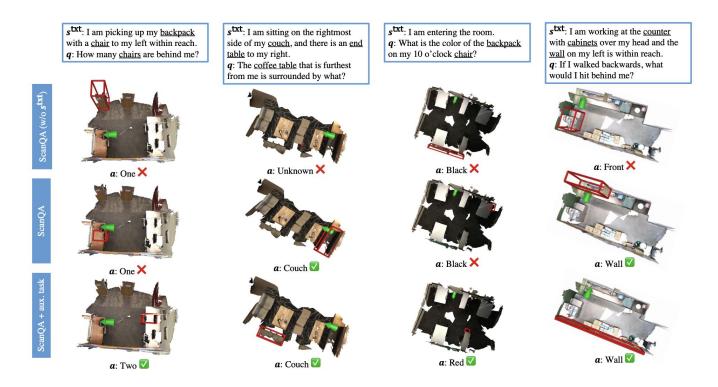
	c	\mathcal{S} Format	test set						Ava
	0		What	Is	How	Can	Which	Others	- Avg.
Blind test	-	$SQ \rightarrow A$	26.75	63.34	43.44	69.53	37.89	43.41	43.65
ScanQA (w/o s ^{txt})	3D scan	VQ→A	28.58	65.03	47.31	66.27	43.87	42.88	45.27
ScanQA (w/o s ^{txt}) ScanQA	3D scan	$VSQ \rightarrow A$	31.64	63.80	46.02	69.53	43.87	45.34	46.58
ScanQA + aux. task									
MCAN	BEV	VSQ→A	28.86	59.66	44.09	68.34	40.74	40.46	43.42
ClipBERT	Ego. video	VSQ→A	30.24	60.12	38.71	63.31	42.45	42.71	43.31

Representation of 3D scenes. 3D scan could still to be *better* representation of 3D scenes than egocentric videos and BEV pictures.

Human (amateur) 3D scan VSQ→A 88.53 93.84 88.44 95.27 87.22 88.57 90.06

	S	Format			tes	st set			Ανα
		Format	What	Is	How	Can	Which	Others	- Avg.
Blind test	_	$SQ \rightarrow A$	26.75	63.34	43.44	69.53	37.89	43.41	43.65

Zero-shot models. These models indeed have great potential in common sense reasoning, spatial language understanding, etc. But they could be *bottlenecked* by 3D captions.


Unified QA _{Large}	ScanRefer	$VSQ \rightarrow A$	33.01	50.43	31.91	56.51	45.17	41.11	41.00
Unified QA _{Large}	ScanRefer ReferIt3D								
GPT-3	ScanRefer	$VSQ \rightarrow A$	39.67	45.99	40.47	45.56	36.08	38.42	41.00
GPT-3	ReferIt3D	$VSQ \rightarrow A$	28.90	46.42	28.05	40.24	30.11	36.07	34.57
Human (amateur)	3D scan	$VSQ \rightarrow A$	88.53	93.84	88.44	95.27	87.22	88.57	90.06

	S	Former			tes	st set			A ~
		Format	What	Is	How	Can	Which	Others	- Avg.
Blind test	-	$SQ{ ightarrow} A$	26.75	63.34	43.44	69.53	37.89	43.41	43.65

Human vs. machine. Amateur human participants that only learn from a handful of examples promptly master our tasks and the gap to the best model is still large (47.2% vs 90.06%).

Human (amateur)	3D scan	$VSQ{\rightarrow} A$	88.53	93.84	88.44	95.27	87.22	88.57	90.06

Benchmarking: qualitative results & failure modes

Most-attended bbox is highlighted in red. Our best model (ScanQA + aux. task) are more likely to attend to the relevant objects and provide the correct answer.

- stxt: I am sitting on the <u>armchair</u> in front of the window.
- **q**: What is above the <u>armchair</u> that is far away in front of me?
- stxt: I am facing an ottoman with a couch to my right within reach and an armchair to my left.
- q: What color is the <u>armchair</u> to my left?
- stxt: I am facing the table and there is a coffee table and a foosball table to my left.
- **q**: Which way should I go to sit on the couch?
- stxt: I am facing an end table and there is a couch on my left within reach.
- q: How many <u>chairs</u> does the <u>table</u> on my left have?

a: Light X

a: Picture X

. TV 🗙

a: Bulletin board

a. Black

a: Red X

a: Brown X

a: White 🔽

a: Left X

a: Forward X

a: Left X

a: Right 🔽

a: Four X

a: Four X

a: Four X

a: Zero 🔽

When the model **fails** to attend to the relevant objects, there is a good chance it will also provide the **wrong** answer.

Takeaway

We present SQA3D, a new benchmark for **embodied scene understanding**, aiming at bridging the gap between 3D scene understanding and embodied Al.

SQA3D is the **largest** dataset combines the best of both worlds: situated reasoning, human-written text, and diverse & challenging problems.

State-of-the-art multi-modal QA models and zero-shot large models struggle on SQA3D and the gap to amateur human participants is also considerable.

Code & benchmark will be online soon!

SQA3D: Situated Question Answering in 3D Scenes

